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1 Introduction

Testing for the martingale di¤erence hypothesis (MDH) of a linear or nonlinear time series is central

in many areas such as statistics, economics and �nance. In particular, many economic theories in

a dynamic context, including the market e¢ ciency hypothesis, rational expectations or optimal

asset pricing, lead to such dependence restrictions on the underlying economic variables, see e.g.

Cochrane (2001). Moreover, testing for the MDH seems to be the �rst natural step in modeling

the conditional mean of a time series and it has important consequences in modeling higher order

conditional moments. This article proposes data-driven smooth tests for the MDH based on the

principal components of certain marked empirical processes having the following attributes: (i)

they are asymptotically distribution-free, with critical values from a �2�distribution, (ii) they
are robust to second and higher order conditional moments of unknown form, in particular, to

conditional heteroscedasticity (iii) in contrast to omnibus tests, smooth tests possess good local

power properties and are optimal in a semiparametric sense to be discussed below, and (iv) they

are very simple to compute, without resorting to nonparametric smoothing estimation.

More precisely, let fYtgt2Z be a strictly stationary and ergodic time series process de�ned on
the probability space (
;F ; P ): The MDH states that the best predictor, in a mean square error
sense, of Yt given It�1 := (Yt�1; Yt�2; :::)0 is just the unconditional expectation, which is zero for a

martingale di¤erence sequence (mds). In other words, the MDH states that Yt = Xt�Xt�1; where
Xt is a martingale process with respect to the �-�eld generated by It�1; i.e., Ft�1 := �(It�1):

The classical procedure for testing the MDH in statistical applications is to assume that the

data generating process (DGP) belongs to a parametric family, and proceeds with a standard

parametric test such as the t�test. For instance, in �nancial econometrics, it is common to assume
that the DGP follows a linear autoregressive model of order one with generalized conditionally

heteroscedastic errors of order (1,1) (in short AR(1)-GARCH(1,1) model), where

Yt = cYt�1 + "t; (1)

jcj < 1; "t = �(It�1;�0)ut; futg is a sequence of independent and identically distributed (iid)
disturbances, independent of It�1; and the conditional variance is given by

�2(It�1;�0) � �2t = �01 + �02"
2
t�1 + �03�

2
t�1:

�0 = (�01; �02; �03)
0 2 � � R3; with � = f(�1; �2; �3) 2 R3 : �1 > 0; �j � 0; j = 2, 3; and

�2 + �3 < 1g: Then one proceeds to test within the model (1) for

eH0 : c = 0 against eH1 : c 6= 0.
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To that end, standard t�tests are commonly used: However, parametric tests such as the t�test
are in general not robust to misspeci�cations in the parametric conditional variance. Moreover,

although robust versions are available in the literature, see e.g. Deo (2000), tests based on corre-

lations, like the t�tests, are only able to detect very few alternatives. In particular, these classical
tests fail to detect many nonlinear alternatives, which are likely to occur in �nancial applications,

see Hsieh (1989), Gallant, Hsieh and Tauchen (1991) and Escanciano and Velasco (2006), among

others. See also Section 5 for some evidence of this �lack of power�with stocks returns.

Nonparametric tests for the MDH vary from classical tests based on correlations or peri-

odograms, such as Box and Pierce (1970) or Durlauf (1991), to the more sophisticated tests based

on the generalized spectral approach, e.g. Escanciano and Velasco (2006), and empirical processes

theory in Domínguez and Lobato (2003). Tests based on the generalized spectral approach and

empirical processes theory are more powerful than correlation-based tests for nonlinear alternatives,

but they usually involve bootstrap approximations, hampering their use in statistical applications.

In this paper we consider simple and powerful tests, which are especially suited for practition-

ers since they are valid under fairly weak regularity conditions on the DGP and do not need of

resampling methods.

Our null hypothesis is that Yt is a mds, i.e.

H0 : E[Yt j It�1] = 0 almost surely (a.s.)

The alternative H1 is the negation of the null, i.e., Yt is not a mds.

The rationale for our tests follows from the asymptotic properties of a marked empirical process

(cf. Koul and Stute, 1999), which for a sample fYtgnt=0 of size n+ 1 is given by

Rn(x) :=
1b�pn

nX
t=1

Yt1(Yt�1 � x); x 2 R; (2)

where b�2 = n�1
Pn
t=1 Y

2
t :

Under the null H0; the process Rn is centered, but under the alternative H1; it is expected to be

not centered anymore, allowing us to base the tests on suitable functionals of Rn. More concretely,

under H0 a suitable standardization of the limit process of Rn is a standard Brownian motion in

proper time (cf. Theorem 1), so suitable functionals of the limit will be distribution-free. When

the functionals are appropriate norms, the resulting tests are omnibus. Although considering an

omnibus test is naturally the �rst idea when there is no a priori preference of directions in the

alternative hypothesis, it is worth noting that there is an important limitation of omnibus tests:

despite the capability of an omnibus test to detect the deviations in all the directions, it is well-

known that they have reasonable nontrivial local power against very few orthogonal directions, see
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Janssen (2000) and Escanciano (2005) for theoretical explanations.

In this paper we construct data-driven smooth tests based on the principal components of Rn

that overcome the �lack of local power� of the omnibus tests. Omnibus tests down weight the

contribution of the principal components whereas our new smooth tests give the same weight to

the number of components used, which is the optimal weighting scheme. The number of components

is chosen following a data-driven selection rule that combines the two most popular selection rules,

Akaike and Schwarz selection criteria. As we shall show, these data-driven smooth tests are more

powerful than omnibus tests for a wide class of realistic alternatives and they are optimal in a

semiparametric sense discussed below. They are able to detect local alternatives converging to the

null at the parametric rate n�1=2:Moreover, they are robust to second and higher order time-varying

conditional moments of unknown form and, unlike the omnibus tests, they provide information on

the possible alternative in case of rejection. All these appealing properties make of the new smooth

tests an attractive testing procedure for the MDH.

The remainder of this paper is organized as follows. Section 2 discusses asymptotically distribution-

free omnibus tests for H0 based on Rn: In Section 3 we develop data-driven smooth tests from the

omnibus tests by means of the principal components decomposition of Rn. Section 4 considers some

Monte Carlo experiments to study the �nite sample performance of the proposed tests. In Section

5 we apply our methodology to the S&P 500 stock index and some of its components. Section 6

discusses extensions of the basic framework and concludes. Mathematical proofs are gathered in

the Appendix.

2 Omnibus tests

This section deals with omnibus tests for H0 based on continuous functionals of Rn: Let F be the

cumulative distribution function (cdf) of Yt. The symbol =) denotes weak convergence in the

metric space D([�1;1]) of the cadlag (right-continuous with left limits) functions on [�1;1],
endowed with the Skorohod metric, see Billingsley (1999). Notice that Rn belongs to D([�1;1])
after de�ning Rn(�1) := 0 and Rn(+1) := n�1=2

Pn
t=1 Yt. The following regularity condition is

necessary for the subsequent asymptotic analysis.

A1: (a) fYtgt2Z is a strictly stationary and ergodic process with 0 < E[Y 2t ] < 1; (b) F is an

absolutely continuous cdf; (c) E[Y 4t jYt�1j
1+�] < 1, for some � > 0: Also, the conditional density

of Yt given It�1 is bounded and continuous.

Assumption A1 is a condition on the DGP and it is su¢ cient for the weak convergence of Rn in

D([�1;1]); see Koul and Stute (1999) for similar assumptions. A1 is rather weak and permits a
large class of nonlinear time series, including heteroskedastic ones. Let B be a standard Brownian
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motion on [0; 1]; and de�ne

�2(x) := ��2E[Y 2t 1(Yt�1 � x)];

with 0 < �2 := E[Y 2t ] <1: Notice that �2(�1) = 0; �2(+1) = 1; and �2(�) is non-decreasing and
continuous if F is continuous. Next theorem establishes the weak convergence of Rn:

Theorem 1: Under A1 and H0,

Rn =) B(�2(�)):

An immediate consequence of Theorem 1 is that, under A1 and H0; and using the scaling properties

of the Brownian motion,

KSn := sup
x2R

jRn(x)j
d�! sup

x2R

��B(�2(x))�� = sup
t2[0;1]

jB(t)j ;

(where the equality is in distribution.) And similarly, from Theorem 1 and Lemma 3.1 in Chang

(1990),

CvMn :=

Z
R

jRn(x)j2 �2n(dx)
d�! CvM1 :=

Z
R

��B(�2(x))��2 �2(dx) = Z
[0;1]

jB(u)j2 du;

where �2n(x) := b��2n�1Pn
t=1 Y

2
t 1(Yt�1 � x):

Norms of Rn; such as KSn or CvMn; constitute omnibus tests for H0 with power against a large

class of alternatives in H1, see Section 6 for a characterization of such alternatives. A similar test

to KSn has been considered in Koul and Stute (1999), see also Domínguez and Lobato (2003). The

test based on CvMn is a variation of the standard Cramér-von Mises (CvM) test, which usually

uses the empirical cdf of fYtgnt=1 replacing �2n: The use of �2n is motivated from the pivotal property
of the limit distribution of CvMn.

3 From omnibus tests to data-driven smooth tests

There has been some recent theoretical evidence that omnibus tests, such as those based on KSn

and CvMn; have local power against very few orthogonal directions in the alternative hypothesis,

see Escanciano (2005). This theoretical �nding is supported by our empirical results in the Monte

Carlo experiments and the application in Section 5. The purpose of this paper is to introduce

a new class of test for the MDH solving this de�ciency. In this section we develop data-driven

smooth tests as a solution to the lack of local power of the CvM tests. Our construction relies on

the principal component decomposition of the CvM test based on CvMn as in Durbin and Knott

(1972).
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De�ne

�j :=
1

(j � 1=2)2�2  j(t) :=
p
2 sin((j � 1=2)�t); t 2 [0; 1]; j = 1; 2::::

Notice that f j(�)g1j=1 constitutes an orthonormal basis of L2[0; 1]; the Hilbert space of all square-
integrable functions (with respect to Lebesgue measure.) Let L2(R; �2) be the Hilbert space of all
�2�square-integrable functions on R; endowed with the inner product

hf; gi =
Z
R

f(x)g(x)�2(dx)

Hence, the basis de�ned by

'j(x) :=  j(�
2(x)); x 2 R; j = 1; 2:::;

is an orthonormal complete basis of L2(R; �2); since



'j ; 'h

�
=

Z
R

 j(�
2(x)) h(�

2(x))�2(dx) =

Z
[0;1]

 j(u) h(u)du =

(
= 1 j = h

= 0 j 6= h:

Moreover, f'jg1j=1 are the eigenfunctions of the covariance operator of B(�2(�)) with associated
eigenvalues f�jg1j=1; i.e.,Z

R

E[B(�2(x))B(�2(y))]'j(x)�
2(dx) = �j'j(y) for all j = 1; 2:::

Hence, both Rn(x) and B(�2(x)) can be expanded using the basis f'jg1j=1; to obtain the so-called
Karhunen-Loève representations (in distribution), see e.g. Bosq (2000),

Rn(�) =
1X
j=1

�
1=2
j �n;j'j(�)

and

B(�2(�)) =
1X
i=1

�
1=2
j �j'j(�),

where �j := �
�1=2
j



B(�2(�)); 'j

�
and �n;j := �

�1=2
j



Rn; 'j

�
are, respectively, the principal compo-

nents and sample principal components of B(�2(�)) and Rn(�). Two important properties are worth
to be mentioned:

(i) From Theorem 1 and the fact that f j ; �jg1j=1 are the eigenelements of the covariance operator
of the standard Brownian motion, it follows that f�jg1j=1 are iid N(0; 1) random variables
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(r.v�s) and f�n;jg1j=1 are, at least, uncorrelated with unit variance. To prove that, write

E[�j�h] = �
�1=2
j �

�1=2
h

Z
R

Z
R

E[B(�2(x))B(�2(y))]'j(x)'h(y)�
2(dx)�2(dy)

= �
�1=2
j �

�1=2
h

Z
[0;1]

Z
[0;1]

E[B(u))B(v)] j(u) h(v)dudv

= �
1=2
j �

�1=2
h

Z
[0;1]

 j(v) h(v)dv:

(ii) Second, Parseval�s identity yields

CvM1 =

1X
j=1

�j�
2
j : (3)

Therefore, from (i) and (ii) it follows that the asymptotic null distribution of CvMn can be

expressed as a weighted sum of independent �21 r.v�s with weights �j . From (3) it can be immediately

seen that alternatives for which the �rst components are signi�catively zero (i.e. those where �2j � 0
for j = 1; :::;m; for a moderate m) are heavily down weighted by �j : These alternatives are called

high-frequency alternatives and they are di¢ cult to be detected by CvMn. In other words, the

CvM test based on CvMn; although being omnibus, is only able to detect �in practice� (i.e. in

terms of local power) those alternatives where the �rst components are signi�catively di¤erent from

zero (i.e. low-frequency alternatives). See Janssen (2000) for further theoretical support on this

�lack�of power for general functionals in the context of goodness-of-�t tests of distributions and

Escanciano (2005) for theoretical evidence in model checks.

A possible solution to overcome the previous problem is o¤ered by the so-called smooth tests.

They were �rst proposed by Neyman (1937) in the context of goodness-of-�t of distributions, and

since then, there have been a plethora of researches documenting their theoretical and empirical

properties. Many authors, including Eubank and LaRiccia (1992), Ledwina (1994), Fan (1996), In-

glot and Ledwina (1996) and Kallenberg and Ledwina (1997), among others, have shown theoretical

and empirical evidence that smooth tests outperform omnibus test over a wide range of realistic

alternatives, see, e.g., Eubank and LaRiccia (1992, p. 2072). All these proposals are devoted to

goodness-of-�t tests of distribution functions. See Rayner and Best (1989) for a monograph on

smooth tests in the latter framework and Koziol (1980) for the problem of testing for symmetry.

There have been some contributions of the smooth approach in regression problems. Fan and

Huang (2001) consider data-driven Neyman�s tests using Fourier transforms for linear models with

iid observations and Gaussian errors, extending previous work by Fan (1996) to regressions. Aerts,

Claeskens and Hart (1999) considered a general methodology for parametric models for iid data,
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extending previous work by Eubank and Hart (1992). Eubank (2000) has compared, theoretically

and by simulations, the test proposed in Eubank and Hart (1992) and a data-driven smooth test

using the Schwarz criterion, as in Ledwina (1994), for the problem of testing for no e¤ect, which

is the iid version of the problem considered in the present paper. To the best of our knowledge,

our tests provide the �rst (data-driven) smooth tests in a semiparametric time series framework

under general serial dependence. Following the results in Eubank (2000) and in Inglot and Ledwina

(2006a), we propose a smooth test coupled with a data-driven choice for the number of principal

components, which combines the advantages of the Schwarz and Akaike criteria.

To avoid the down weighting due to the ��js we construct the test statistic

Tn;m =

mX
j=1

b�2j;n; (4)

where

b�j;n = �
�1=2
j

Z
R

 j(�
2
n(x))Rn(x)�

2
n(dx)

= �
�1=2
j

p
2b�2n

nX
s=1

sin((j � 1=2)b��2��2n(Ys�1))Y 2s Rn(Ys�1);
estimates �j : Under the null H0; the asymptotic distribution of Tn;m for a �xed m is a �2m-

distribution, see Theorem 2. For each �xed m 2 N; the test based on rejecting H0 when �n;m;� :=
1(Tn;m > �2m;�) takes the value one, where �

2
m;� is the (1� �)�quantile of the chi�square distri-

bution with m degrees of freedom, is called a smooth test.

Examples in the literature of goodness-of-�t tests for distributions show that a considerable loss

of power may occur when a wrong choice of m is made, see e.g. Kallenberg and Ledwina (1997)

and Section 5 below. This illustrates that a good procedure for choosing m based on the data is

very welcome. Here, we adopt the combination rule of the Schwarz�s and Akaike�s selection rules

of Inglot and Ledwina (2006a) for the choice of m; i.e., we de�ne

em = minfm : 1 � m � d;Lm � Lh; h = 1; 2:::; dg; (5)

where

Lm = Tn;m � �(m;n; q); (6)

and d is an upper bound that can be arbitrarily large but �xed, and

�(j; n; c) =

(
j log n; if max1�j�d jb�j;nj � pq log n
2j; if max1�j�d jb�j;nj > pq log n;
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where q is some �xed positive number. Our choice of q is 2:4 and is motivated from an extensive

simulation study in Inglot and Ledwina (2006b) and from simulations in the present paper. Small

values of q result in the Akaike�s criterion choice, while large q0s lead to the choice of the Schwarz�s

criterion. Moderate values, such as 2:4; provide a �switching e¤ect� in which one combines the

advantages of the two selection rules, that is, when the alternative is of high frequency Akaike is

used whereas if the alternative is low-frequency Schwarz is chosen.

Our �nal test is the data-driven smooth test

Tn;em =
emX
j=1

b�2j;n:
Other penalization terms di¤erent from the one used here are also valid under mild conditions on

the penalization, as shown by Kallemberg (2002). We shall show in Section 4 and Section 5 that

our combination rule works quite well for moderate sample sizes as those encountered in �nancial

applications. See Section 6 for further motivation and variations of the selection rule. Next theorem

establishes the asymptotic null distribution of smooth tests.

Theorem 2: Under A1 and H0,

(i)

Tn;m
d�! �2m:

(ii) Furthermore,

Tn;em d�! �21:

As with other smooth tests, our test can be interpreted as an optimal test for a �general parametric

model� that nests the null hypothesis as a particular case. This is the original and fundamental

idea of Neyman (1937). Unlike in other smooth tests, in our case the general model is semipara-

metric and involves in�nite-dimensional nuisance parameters in a time series framework. Under

this interpretation, the optimality of the smooth test can be formally formulated using the theory

of semiparametric e¢ cient tests in Choi, Hall, and Schick (1996). This theory parallels the e¢ -

cient estimation theory of semiparametric and nonparametric models as discussed in the excellent

monograph by Bickel, Klaassen, Ritov and Wellner (1993).

To that end, de�ne the conditional variance �2(x) := E
�
Y 2t j Yt�1 = x

�
and the functions

hj(x) =
p
2�
�1=2
j �2(x) cos

�
(j � 1=2)��2��2(x)

�
; j = 1; 2:::;
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and consider the semiparametric models

Yt = c1h1(Yt�1) + � � �+ cmhm(Yt�1) + "t;

= c0h(Yt�1) + "t; (7)

where "t = Yt � E[Yt j It�1]; c = (c1; :::; cm)0 and h(Yt�1) = (h1(Yt�1); :::; hm(Yt�1))0:
Model (7) is semiparametric in the sense that we do not know neither the distribution of the

lagged variable Yt�1 nor the (conditional) distribution of errors "t given Yt�1; which are in�nite-

dimensional nuisance parameters. Choi, Hall, and Schick (1996) have introduced the concept of an

asymptotically uniformly most powerful invariant and unbiased (AUMPIU) test in a semiparametric

framework where the parameter of interest is �nite-dimensional, as is our case with c 2 Rm. The
next theorem proves the asymptotic e¢ ciency of smooth tests for the case of Markov processes

of order one. Extensions to higher order Markov processes are trivial, and hence, omitted. The

Markov property is not necessary but facilitates the application of the existing semiparametric

e¢ ciency theory (cf. Wefelmeyer, 1997.) It is expected that the optimality result can be extended

to non-Markovian processes as long as a local asymptotic normality property of the nonparametric

model is guaranteed.

A2: fYtgt2Z is a Markov process of order one.

Theorem 3: Under A1 and A2, the smooth test �n;m;� based on rejecting when Tn;m is large is

an AUMPIU test for testing Hs0 : c = 0 against Hs1 : c 6= 0 in model (7), in the sense discussed
in Choi, Hall, and Schick (1996).

The optimality result of our smooth tests in Theorem 3 complements other optimality properties

that have been obtained in the context of goodness-of-�t tests of distributions, see, for instance,

the intermediate e¢ ciency concept in Inglot and Ledwina (1996). In principle, these alternative

concepts might be extended to our semiparametric framework considered here. See Eubank (2000)

for such an extensions for iid data and �xed design.

An attractive feature of our optimal smooth tests is that when Hs0 is rejected, bE[Yt j Yt�1] =bc0bh(Yt�1) provides an alternative model for the conditional mean E[Yt j Yt�1]; where bc is the
least squares estimator in (7) and bh(Yt�1) replaces �2(x) and �2(x) in h(Yt�1) by nonparametric
estimators �2n(x) and �

2
n(x); respectively. The estimator bE[Yt j Yt�1] can be interpreted as a series

expansion estimator. In this sense, smooth tests are more informative than omnibus tests when the

null hypothesis is rejected. See our application in Section 5 for an example of estimate of alternative

models for the conditional mean of some stock returns.
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4 A simulation study

In order to examine the �nite sample performance of the proposed tests we carry out a simulation

experiment with some DGP under the null and under the alternative. We compare our data-

driven smooth test with the standard t�test, the omnibus tests proposed in Section 2, KSn and
CvMn; and the smooth test with a �xed number of components Tn;m. The number of Monte Carlo

experiments in all simulations is 1000. We report empirical size and power at 5% nominal level,

results with other nominal levels are similar and hence, omitted. The bound for the number of

components in Tn;em is chosen to be d = 10 in all simulations. Unreported simulations here and

simulations in related literature, see e.g. Kallenberg and Ledwina (1997), show that the choice of d

is not as important as the choice of m: Selection rules, such as the one considered here, are stable

as a function of d: In these models the innovations futg are iid distributed as N(0; 1).
The models used in the simulations include the following:

1. An AR(1)-GARCH(1,1) model as in (1), where

Yt = cYt�1 + "t; "t = �(It�1;�0)ut;

�2(It�1;�0) � �2t = �01 + �02"
2
t�1 + �03�

2
t�1;

with (�01; �02; �03) = (0:025; 0:25; 0:5).

2. An AR(1)-EGARCH(1,1) model, where

Yt = cYt�1 + "t; "t = �(It�1;�0)ut;

�2(It�1;�0) � ln(�2t ) = �01 + �02(j"t�1j � Ej"t�1j+ �03"t�1) + �04ln(�2t�1);

with (�01; �02; �03; �04) = (0:2; 0:1; 0:98; 0:01).

3. A nonlinear autoregressive process

Yt = chj(Yt�1) + ut;

hj(x) = cos ((j � 1=2)�x) ;

with j = 2; 3.

4. Non-linear Moving Average (NLMA) model :

Yt = ut�1ut�2(ut�2 + ut + 1):
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In models (1-3) the null hypothesis corresponds to c = 0:We have considered c from �0:9 to 0:9
in intervals of length 0:1 to study power performance for models (1-2). The AR(1)-GARCH(1,1) and

AR(1)-EGARCH(1,1) models are both standard and the most used models in �nancial applications.

In Figure 1 we report the empirical size and power for the model AR(1)-GARCH(1,1) and AR(1)-

EGARCH(1,1) at 5% level of the test statistics KSn; CvMn; t�test, Tn;3 and Tn;em: The sample
sizes for models (1-2) are n = 500 and n = 1000.

� � � � � � � � � � �

FIGURE 1 ABOUT HERE

� � � � � � � � � � �

It can be seen from Figure 1 that all tests present a good size performance. The data-driven

smooth test has empirical sizes of 0:064 (GARCH, n = 500), 0:048 (GARCH, n = 1000), 0:060

(EGARCH, n = 500) and 0:053 (EGARCH, n = 1000). The empirical size with Gaussian in-

novations is satisfactory for all test statistics and both models. Unreported simulations with

t�distributed innovations with 5 degrees of freedom show some overrejection of the data-driven

test (e.g. for GARCH 0:112 with n = 500 and 0:079 with n = 1000). This overrejection for

non-Gaussian innovations is not speci�c of our data-driven test and appears in other data-driven

smooth tests proposed in the literature, see e.g. Ledwina (1994). Kallenberg and Ledwina (1997)

recommend to use an improved approximation to the asymptotic critical value. Their idea, however,

cannot be directly applied to our present framework. As expected, the t�test presents the best
power against these linear alternatives, followed by the data-driven and �xed smooth tests. Both

smooth tests perform similarly in terms of empirical power. The omnibus tests have low power in

comparison with the other competing tests, and in agreement with the theoretical results shown in

Escanciano (2005).

Table 1 reports the empirical power and size of tests for model 3 for some values of c and the

sample size n = 500.

� � � � � � � � � � �

TABLE 1 ABOUT HERE

� � � � � � � � � � �

As can be seen from Table 1, model 3 with j = 3 is an example of a high-frequency alternative. It

is shown that the unique test detecting these alternatives is the data-driven smooth test Tn;em. This
example illustrates that a wrong choice in the number of components may lead to a considerable

loss of power, see the results for Tn;3: For j = 2 the model yields an alternative of intermediate

frequency. The smooth test with a �xed number of components detects this alternative but with
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much less power than the data-driven smooth test. Omnibus tests as well as the t�test have very
low power against this alternative.

In Table 2 we report the empirical power of the tests for the NLMA model and sample sizes

n = 300 and n = 500. We can observe that the omnibus tests and the t�test have no power against
this alternative. The NLMA model generates uncorrelated data, so this alternative is not detected

by tests based on correlations, and in particular by the t�test. Among the tests considered, only
smooth tests are able to detect this alternative, with Tn;em being the best.

� � � � � � � � � � �

TABLE 2 ABOUT HERE

� � � � � � � � � � �

The conclusions from these simulations and other simulations in Section 6 are the following.

The data-driven smooth test has a reasonable size performance for moderate sample sizes and

presents excellent power properties against the alternatives considered, being in many cases the

unique consistent test. These properties make of the data-driven test a convenient test procedure

for �nancial applications where the sample size is usually moderate or large, meaning n � 500;

where we recommend to use the asymptotic critical values. Simulated critical values are, of course,

also possible and are recommended for small sample sizes or for fat-tailed distributions. Smooth

tests with a �xed number of components maintain an excellent size performance even for very small

sample sizes and have reasonable power for a large class of alternatives. In particular, they have

more power than omnibus tests. Only high-frequency alternatives are hardly detected by smooth

tests with a �xed number of components.

5 An application to economic time series

In this section, we present applications of our tests to some daily closed stock prices. We consider

the S&P 500 stock index and ten of its components: Ameriprice Financial (AF), Bank of America

CP. (BA), Citigroup Inc. (Cit), Eaton CP. (Ea), Ecolab Inc. (Ec), Exxon Mobil CP. (Ex), General

Electric Co. (GE), General Motors. (GM), Pepsi Bottling Grp. (Pep) and Starbucks CP. (Sta).

Some of these stocks are within the �ve most important components of the S&P 500 and di¤erent

sectors are considered, such as Financial, Services, Industrial Goods, Consumer Goods, Healthcare

and Basic Materials sectors. We study the period from 2th January 2003 until 30th December

2005, with a total of 755 observations. The prices are obtained from www.�nance.yahoo.com.

We consider the returns of each stocks, obtained as 100 log(St=St�1); where St is the index�s

price at day t. The following table shows the summary statistics of the returns.

� � � � � � � � � � �

13



TABLE 3 ABOUT HERE

� � � � � � � � � � �

We can observe that the sample kurtosis coe¢ cients are large for all series, compared to the

kurtosis coe¢ cient of the standard normal distribution which is 3. In the application the returns

have been centered before applying the test, although this does not make any di¤erence for the

results below.

Table 4 indicates the p-values for the tests and Monte Carlo setup of Section 5.

� � � � � � � � � � �

TABLE 4 ABOUT HERE

� � � � � � � � � � �

The data-driven smooth test rejects the MDH for all stocks with exception of Cit and GE,

for all reasonable nominal levels. Omnibus tests are unable to reject these alternatives (with the

exception of the KS test for Sta at 5%, with a p-value of 0.038) and the t�test only does for Ec
and is doubtful for the S&P 500. The smooth test Tn;3 rejects the MDH at 5% for all stocks but

for AF, Cit, GE and GM. Thus, it seems that AF and GM are high-frequency alternatives. To

gain some insight in the character (low- or high- frequency) of the alternatives we report in Table

5 the choice of em(d) and the corresponding squared component b�2em(d);n for d = 10. We also note

that the �rst signi�cative component of AF is the 5th, with b�25;n = 15:2: Notice that under the

null, b�25;n is distributed as a �21 distribution, so this value is signi�catively di¤erent from zero. For

GM the �rst signi�cative component is the 4th, with b�24;n = 4:4: It is worth to remark that for

GM b�210;n = 27:97: Then, it is con�rmed that AF and GM are high-frequency alternatives. The

omnibus and the smooth tests with a �xed number of components are silent with respect to these

alternatives, whereas the new data-driven smooth test clearly rejects the MDH. These examples

highlight the properties of the new tests.

Our new smooth tests statistic �nd nonlinear dependence in the conditional mean of these

stocks, in contrast to most of the theoretical and applied literature which assume no structure in

the conditional mean of �nancial data. The nonlinearity in the conditional mean suggests that

additional e¤ort has to be dedicated to investigate the form of such nonlinearity before modeling

the conditional variance.

� � � � � � � � � � �

TABLE 5 ABOUT HERE

� � � � � � � � � � �
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To gain some insights in the nonlinearity of the S&P 500 we plot in Figure 2 the �tted regression

from

Yt = c1 cos
�
0:5��2��2(Yt�1)

�
+ c2 cos

�
1:5��2��2(Yt�1)

�
+ "t: (8)

We plot the least squares �tted values bYt from the previous regression against the lagged values

of Yt�1: Figure 2 reveals that the conditional mean at lag one of the S&P 500 is nonlinear and

non-decreasing around zero, a feature which is consistent with the well-known fact that the sample

autocorrelation at lag j = 1 of stock returns is usually positive. We observe an asymmetric e¤ect

in the �tted conditional mean with variations in negative values of Yt�1 larger than variations in

positive values. This is consistent with the well-known �Leverage e¤ect�in stocks returns, in which

volatility is higher when past stock returns are negative. The positive correlation e¤ect is reversed

for �large� absolute values of the returns. More concretly, for values larger than 1:2 the �tted

regression is decreasing, re�ecting the expectations of investors that after a large positive return

foresee a decay in the stock price return.

� � � � � � � � � � �

FIGURE 2 ABOUT HERE

� � � � � � � � � � �

6 Extensions, modi�cations and conclusions

This section discusses extensions and modi�cations of the basic setup considered in the paper. The

major limitation of the proposed methodology is that tests based on Rn in (2) only have power

against alternatives satisfying E[Yt1(Yt�1 � x)] 6= 0 in a set with positive Lebesgue measure. These
alternatives correspond to those such that E[Yt j Yt�1] 6= 0: The motivation for the use of just Yt�1
as the conditioning variable is practical, one expects that the most important lag is the �rst one in

real data, but mostly theoretical, since the principal components and eigenvalues associated to Rn

are only known for this univariate case.

Here, we discuss two alternatives for applying the methodology of this paper to a more general

multivariate case. We can consider the situation where the conditioning set is a d�variate random
vector, sayXt = (Yt;Z0t; ; :::; Yt�P+1;Z

0
t�P+1)

0 where Zt is a vector of explanatory random variables,

and the mean of Yt is di¤erent from zero. That is, we are now concerned with testing the hypothesis

H�
0 : E[Yt j Xt�1] = � a:s: � 2 R: (9)

This is the set-up considered in Domínguez and Lobato (2003).

The �rst possibility we mention consists in (nonparametrically) estimating the principal com-
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ponents of the marked empirical process

Rn;w(x) := n�1=2
nX
t=1

(Yt � Y )w(Xt�1;x) x 2 Rd;

for a suitable weight function w and where Y is the usual sample mean. See Escanciano (2006) for

possible functions w: The principal components of Rn;w can be estimated consistently along the

lines suggested in Escanciano (2005) by solving the eigenvalues and eigenvectors of an n�n matrix.
The second possibility is based on a marked process based on projections

Rn;ind(�0; x) := n�1=2
nX
t=1

(Yt � Y )1(�00Xt�1 � x) x 2 R:

The direction of projection �0 can be computed from projection pursuit techniques (c.f. Huber

1985) or from dimension reduction techniques as in Cook and Li (2002). Although, how to choose

the projection direction is important, it will not be discussed here for the sake of space. In the

context of Generelized Linear models, Stute, Presedo-Quindimil, González-Manteiga and Koul

(2006) advocate for the use of Rn;ind(�n; x); with �n an estimator of the Generalized Linear model

parameter. Here we assume that if �0 is unknown, it can be estimated by a
p
n�consistent estimator

�n; without restricting ourselves to a particular estimator.

As shown by Stute et al. (2006), under mild conditions, it follows that

sup
x2R

jRn;ind(�n; x)�Rn;ind(�0; x)j
P! 0:

Moreover, the asymptotic distribution of Rn;ind(�n; u) under H
�
0 is a Gaussian process with covari-

ance function

K(x1; x2) = E[(Yt � �)2
�
1(�00Xt�1 � x1)� F�0(x1)

	�
1(�00Xt�1 � x2)� F�0(x2)

	
];

where F�0 is the cdf of �
0
0Xt�1:

Let  (�) be the function de�ned by

 (u) =

uZ
�1

�2�0(x)F�0(dx);

with �2�0(x) := E
�
(Yt � �)2 j �00Xt�1 = x

�
the conditional variance. We shall transform the limit

process of Rn;ind(�n; u) to a Brownian motion in proper time. It is not only the asymptotic distrib-

ution freeness of the transformation which makes this approach attractive. Rather the transformed

process may be used to construct smooth tests through a principal component decomposition as
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discussed above. Let

A(u) :=

1Z
u

��2�0 (x)F�0(dx):

Assume throughout that A(u) 6= 0 8u 2 R; and consider the linear operator T (�) de�ned by

Tf(u) := f(u)�
uZ
�1

A�1(x)

1Z
x

��2�0 (y)f(dy)F�0(dx);

where f(�) is either of bounded total variation or a Brownian motion B �  . In the latter case, the
integral needs to be interpreted as a stochastic integral. Such transformations have been considered

in the goodness-of-�t literature by Khmaladze (1981, 1988), see also Koul and Stute (1999), Stute

and Zhu (2002) and Delgado, Hidalgo and Velasco (2005), among others. Note that T (�) depends
on unknown quantities. A natural estimator of T (�) is

Tnf(u) = f(u)�
uZ
�1

A�1n (x)

1Z
x

��2n;�n(y)f(dy)Fn;�n(dx);

where

An(u) =

1Z
u

��2n;�n(x)Fn;�n(dx);

and ��2n;�n(x) is any nonparametric consistent estimator of the conditional variance, e.g. a Nadaraya-

Watson estimator. Then the transformed process can be written as

TnRn;ind(�n; u) = Rn;ind(�n; u)�
1

n3=2

nX
t=1

nX
s=1

1(�0nXt�1 � u)A�1n (�
0
nXt�1)

�1(�0nXt�1 � �0nXs�1)(Ys � Y )��2n;�n(�
0
nXs�1):

It can be shown that under the null hypothesis H�
0 and some mild conditions, including that �

2
n;�n

is a uniformly consistent estimator of �2�0 ; we have that

TnRn;ind(�n; u) =) B �  (u) in D([�1;1)):

See Stute, Thies and Zhu (1998).

In particular from the scaling properties of the Brownian motion and the Continuous Mapping

Theorem we have that

aZ
�1

�� �1n (a)TnRn;ind(�n; x)��2  n(dx) d�!
1Z
0

jB(u)j2 du; (10)
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where

 n(x) = n�1
nX
t=1

(Yt � Y )21(�0nXt�1 � x):

At this point, the data-driven smooth test can be computed in exactly the same manner as in

Section 3. Formal details are omitted for the sake of space.

Now, we discuss di¤erent selection rules for the data-driven smooth test. In this paper we have

adopted the combination rule of Inglot and Ledwina (2006a), but other rules are available in the

literature. See the aforementioned references. Among other rules, the most popular choice in the

context of smooth tests is the Schwarz�s selection rule of Ledwina (1994). This corresponds to

mBIC = minfm : 1 � m � d;Lm � Lh; h = 1; 2:::; dg;

where

Lm = Tn;m �m log n:

Also other choices of q in our combination rule can be considered. Inglot and Ledwina (2006b)

provided simulations with di¤erent choices of q for data-driven smooth tests for testing uniformity

in the context of goodness-of-�t tests for distributions. Here we run a small Monte Carlo experiment

and consider the AR(1)-GARCH(1,1) model as in the Monte Carlo section for c = �0:1; 0 and 0:1.
We recall that small values of q in the combination rule results in the Akaike�s criterion, while

large q0s lead to the choice of the Schwarz�s criterion. This is con�rmed in the simulations. In

Table 6 we report the empirical rejection probabilities for the AR(1)-GARCH(1,1) model. Tn;mBIC

stands for the data-driven smooth test with the Schwarz�s selection rule whereas Tn;em(q) denotes
the data-driven test with our combination rule using q: We observe that di¤erent values of q lead

to small variations in the rejection probabilities.

� � � � � � � � � � �

TABLE 6 ABOUT HERE

� � � � � � � � � � �

To conclude, we have proposed a new data-driven smooth test for the MDH with excellent power

properties, comparing well to other competing tests. Theoretical results such as the lack of power

of omnibus tests or the inability of the t�test to detect certain nonlinear alternatives have been
con�rmed also empirically. The new smooth tests provide a compromise between the omnibus

tests, which are consistent against all alternatives, and directional tests, which are optimal in a

given (unique) univariate direction. Optimality, in a semiparametric sense, of our test has been

shown for a class of Markov processes. We have demonstrated that high-frequency alternatives are

likely to appear in �nancial applications. Our data-driven smooth tests are especially convenient to
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detect such alternatives, while being able to detect also low-frequency alternatives. An important

extension of our tests would be to consider the bound d tending to in�nity with the sample size. This

extension is di¢ culted by the general serial dependence allowed in our framework. It is expected

that under suitable mixing conditions such an extension can be accomplished. This challenging

problem is deferred for future research.

7 Appendix: Mathematical Proofs

Proof of Theorem 1: The proof follows easily from Lemma 2 in Domínguez and Lobato (2004),

and hence, it is omitted. �

Proof of Theorem 2: (i) The Uniform Ergodic Theorem, see e.g. Dehling and Philipp (2002),

and A1 yield

sup
x2R

���2n(x)� �2(x)�� = oP (1):

The last display, Theorem 1 and Lemma 3.1 in Chang (1990) imply, for 1 � j � d;

b�j;n = �
�1=2
j

Z
R

 j(�
2(x))Rn(x)�

2(dx) + oP (1)

: = e�j;n + oP (1);
where e�j;n can be written as

e�j;n := p
2

��
1=2
j

p
n

nX
s=1

Ys cos((j � 1=2)��2��2(Ys�1)): (11)

Notice that, E[e�j;n] = 0 and
E[e�j;ne�h;n] = 2

Z
R

cos((j � 1=2)��2(x)) cos((j � 1=2)��2(x))�2(dx)

= �jh;

where �jh = 0 if j 6= h, and �jh = 1 otherwise.

Now, by the Cramer-Wold device, A1 and the Central Limit Theorem (CLT) for martin-

gales with stationary and ergodic di¤erences (Billingsley (1961)) it readily follows that the vector

(e�1;n; :::;e�m;n)0 converges to a m�variate standard normal random vector. This implies part (i).

As for part (ii). Denote the Schwarz�s rule for the choice of m by

mBIC = minfm : 1 � m � d;Lm � Lh; h = 1; 2:::; dg;
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where

Lm = Tn;m �m log n:

We shall prove that under H0; em = mBIC with probability tending to one. To that end, de�ne the

event

An(q) =

�
max
1�j�d

jb�j;nj >pq log n� :
From part (i) we have that max

1�j�d
jb�j;nj = OP (1): Thus, it follows that P (An(q)) = o(1); which in

turn implies limn!1 P (em = mBIC) = 1:

Now, we prove that, again under H0;

lim
n!1

P (mBIC = 1) = 1: (12)

First, notice that

P (mBIC = 1) = 1�
dX
j=1

P (mBIC = j) � 1�
dX
j=1

P (Lj � L1): (13)

Now,

P (Lj � L1) � P (Tn;j � (j � 1) log(n)) � Cn�� ; for some � > 0;

where the last inequality follows from the moderate deviation inequality for multivariate martingales

in Grama and Haeusler (2006), see their Theorem 2 and Corollary 1. Therefore, Theorem 2 follows

from (12) and application of the standard CLT for martingales. The theorem is proved. �
Before proving Theorem 3 we need some notation and discussion. We proceed to investigate

the Pitman asymptotic relative e¢ ciency of tests in this semiparametric testing environment, along

the lines of Choi, Hall, and Schick (1996). Write (";X)0 for a r.v. with the same distribution

as ("t; Yt�1)0: Y has also the same distribution as X: Similarly, Z denotes a r.v. with the same

probability distribution, say P; as Zt = (Yt; Yt�1)0; t 2 Z: Let L2(P ) be the space of square integrable
random vectors with respect to P and let jj � jj2;P � jj � jj2 indicate the L2(P ) norm. Likewise, de�ne
L2(Pn) and jj � jj2;Pn , where Pn is the empirical probability measure of fZtgnt=1: Finally, let P be

the set of probability measures for P for which the regularity conditions below hold.

The nuisance parameters in the model (7) are given by �0 = (f"jX(�); f(�))0; where f"jX(�) is the
conditional density of errors " given X; and f(�) is the density of X: The parameter of interest is
c 2 Rm: Let 
0 = (0;�0) and 
 = (c;�) with � = (h"jX(�); h(�))0 2 H = B1 � B2: Here B1 is the
set of all conditional error densities consistent with the model (7) and B2 is the set of all densities
for X; in both cases the densities are dominated by a particular �-�nite measure �. De�ne the

densities

g(y; x; c;�) = h"jx(y � c0h(x))hx(x)
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and consider the family of probabilities: ~P := fP 2 P : dP=d� = g(y; x; c;�), with
R
"h"jx("jx)d" =

0g: The family fP 2 ~P : dP=d� = g(y; x;0;�)g represents the space of models under the null
hypothesis: Then the whole class of semiparametric models under consideration are characterized

by the family of distributions

fP 2 ~P : dP=d� = g(y; x; c;�); (c;�) 2 Rm �Hg:

The construction of the e¢ cient score test proceeds as follows. Given the score _l1 in the marginal

family P1 = fP 2 ~P : dP=d� = g(y; x; c;�0); c 2 Rmg; one computes the tangent space _P2 of the
nuisance parameter family P2 = fP 2 ~P : dP=d� = g(y; x;0;�);� 2 Hg. Then the e¢ cient score
l�1 can be constructed by the orthogonal projection of score _l1 on the orthocomplement of _P2; i.e.,
l�1 =

_l1 � �[_l1j _P2]; where �[hj _P2] denotes the orthogonal projection in L2(P ) of h on _P2: A score
test using the e¢ cient score along this least favorable direction will be an asymptotically uniformly

most powerful invariant and asymptotically unbiased test at �0; in short AUMPIU (�;�0), as

de�ned in Choi, Hall, and Schick (1996). Eventually it turns out that the test does not depend on

�0; extending its uniformity over all alternatives with di¤erent �0�s. In this case, we say that the

test is AUMPIU(�).

Wefelmeyer (1997) characterized the tangent space _P2 of the nuisance parameter family P2:
The tangent space _P2 at P 2 P2 is given by

_P2 = fs 2 L2(P ) : E[s(Z)] = 0; E[Y s(Z)jX] = 0g:

The following lemma establishes the projection operator �[hj _P2]:

Lemma A1: Under Assumptions A1-A2, _P2 is the tangent space of the nuisance parameter family
P2; and

�[sj _P2](z) = s(z)� E[s(Z)]� y��2(x)E[Y s(Z)jX = x]; for s 2 L2(P ); z = (y; x):

Proof of Lemma 1: That _P2 is the tangent space of the nuisance parameter family P2 follows
from Wefelmeyer (1997). For the rest of the proof it su¢ ces to show that (a) �[sj _P2] 2 _P2 and
(b) s � �[sj _P2] ? _P2: To show (a), notice that using the null restriction E[Y jX] = 0; we have

E(�[hj _P2]) = 0: Also

E[Y�[sj _P2]jX] = E[Y s(Z)jX]� E[Y s(Z)jX = x]

= 0:
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Hence (a) is proved. To show (b), notice that for s 2 _P2;

E[
�
h��[hj _P2]

�
s(Z)] = E[Y ��2(X)E[Y h(Z)jX = x]s(Z)]

= 0:

�

Proof of Theorem 3: The marginal score _l1 is given by

_l1(z) = �h(x)l"=x(z);

where l"=x(z) := @ ln f"=x(z)=@": Notice that E[l"=x(Z)Y j X] = �1: Hence,

l�1 = _l1 ��[_l1j _P2]

= y��2(x)E[Y _l1(Z)jX = x]

= y��2(x)h(x):

An optimal (semiparametric) score test rejects the null hypothesis H0 for large values of

T �n;e(a) =

(
1p
n

nX
t=1

l�1(Zt)

)0
I�1

(
1p
n

nX
t=1

l�1(Zt)

)
;

where I : = jjl�1(Zt; a)jj2;P : Similar arguments to those of Theorem 2 show that I is the identity

matrix of order m and that

T �n;e(a) =
mX
j=1

(e�j;n)2 = mX
j=1

b�2j;n + oP (1);
where e�j;n is de�ned in (11). We have shown that the test based on Tn;e(a) is AUMPIU(�) for
testing Hs0 : c = 0 against Hs1 : c 6= 0: �
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Figure 1: Size and Power of Tests at 5% for the model (1-2)
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KS-dash, CvM-square, t-test�plus, Tn;em-start, Tn;3-circle. 5% level, sample size n = 500 and

n = 1000: Innovations distributed as N(0; 1).

Table 1: Power and Size of Tests at 5% for the model 3.

n=500 c = �0:6 c = �0:3 c = 0:0 c = 0:3 c = 0:6

j = 2 j = 3 j = 2 j = 3 j = 2 j = 3 j = 2 j = 3 j = 2 j = 3

KS 0:123 0:059 0:077 0:067 0:038 0:036 0:067 0:052 0:131 0:058

CvM 0:067 0:042 0:068 0:070 0:039 0:044 0:062 0:048 0:068 0:038

t� test 0:058 0:042 0:051 0:049 0:035 0:060 0:047 0:048 0:038 0:047

Tn;3 0:179 0:056 0:095 0:063 0:051 0:038 0:094 0:058 0:155 0:053

Tn;em 0:989 0:858 0:273 0:191 0:051 0:060 0:287 0:192 0:993 0:871

Table 2: Power of Tests at 5% for the model NLMA

n = 300 n = 500

KS 0.039 0.074

CvM 0.042 0.051

t� test 0.065 0.073

Tn;3 0.480 0.642

Tn;em 0.781 0.755
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Table 3: Summary statistics of the returns

n=755 S&P500 AF BA Cit Ea Ec Ex GE GM Pep Sta
Mean -0.042 -0.269 -0.036 -0.039 -0.069 -0.052 -0.061 -0.043 0.091 -0.039 -0.137

Median -0.071 0.013 -0.059 -0.025 -0.089 0.000 -0.150 0.000 0.129 -0.035 -0.031

SD 0.821 1.716 0.997 1.144 1.420 1.145 1.199 1.165 2.004 1.379 1.631

Skew. -0.100 -0.768 1.800 -0.079 0.074 -0.201 0.339 -0.255 -0.045 0.028 -0.727

Kurt. 4.234 4.766 20.318 4.378 5.164 3.484 3.912 4.413 14.932 12.420 11.246

Maxi. 3.587 3.123 10.677 4.116 7.677 3.252 4.455 4.642 15.045 10.234 8.560

Minim. -3.481 -6.518 -2.654 -5.320 -5.808 -5.103 -3.677 -5.756 -16.647 -9.481 -13.659

Table 4: p-values of the tests. S&P 500 and some of its components.

S&P500 AF BA Cit Ea Ec Ex GE GM Pep Sta
KS 0.136 0.150 0.299 0.424 0.088 0.170 0.170 0.597 0.256 0.299 0.038

CvM 0.113 0.136 0.248 0.447 0.127 0.137 0.166 0.566 0.227 0.248 0.103

t� test 0.045 0.462 0.285 0.624 0.788 0.000 0.299 0.700 0.745 0.395 0.057

Tn;3 0.000 0.405 0.012 0.227 0.004 0.000 0.000 0.699 0.406 0.001 0.018

Tn;em 0.000 0.000 0.000 0.571 0.004 0.000 0.000 0.528 0.000 0.000 0.000

Table 5: Individual Principal Components. S&P 500 and some of its components.

S&P500 AF BA Cit Ea Ec Ex GE GM Pep Staem(10) 2 10 10 1 2 2 2 1 10 2 10b�2em(10);n 22.95�� 9.05�� 81.10�� 0.32 6.73�� 20.39�� 16.29�� 0.39 27.97�� 15.14�� 30.51��

Note: * Signi�cative at 5%, ** Signi�cative at 1%.
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Figure 2: Fitted model (8) for S&P 500
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Table 6: GARCH(1,1) Gaussian-errors, n = 500

c = �0:1 c = 0 c = 0:1

Tn;mBIC 0.259 0.060 0.273

Tn;em(2:2) 0.267 0.067 0.279

Tn;em(2:4) 0.264 0.064 0.277

Tn;em(2:6) 0.264 0.063 0.276

Tn;em(2:8) 0.264 0.062 0.276

Tn;em(3) 0.262 0.061 0.275

Tn;em(3:2) 0.261 0.060 0.274
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