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Abstract

A new insurance provider or a regulatory agency may be interested in

determining a risk measure consistent with observed market prices of a

collection of risks. Using a relationship between distorted coherent risk

measures and spectral risk measures, we provide a method for reconstruct-

ing distortion functions from the observed prices of risk. The technique is

based on an appropriate application of the method of maximum entropy in

the mean, which builds upon the classical method of maximum entropy.
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1 Introduction

The problem of pricing actuarial risk has received a great deal of attention in

recent years, generating a large amount of theoretical and practical work. A

good account of the traditional and modern pricing methods appears in the book

by Kaas, Goovaerts, Dhaene and Denuit (Kaas et al. (2005)). Among pricing

measures the class of distorted risk measures is popular and appealing. For fur-

ther details and the general philosophy of distorted risk measures the interested

reader may consult Wang (1996), Wang, Young and Panjer (1997), and Wang and

Young (1998), where, building on Quiggin (1982), Yaari (1987), and Schmeidler

(1989), an axiomatic characterization and many applications to insurance can be

found. Recent work on the use of actuarial risk measures for financial derivatives

pricing is due to Goovaerts and Laeven (2008) (see also the companion paper

Goovaerts, Kaas, Laeven and Tang (2004)), and for the relationship between risk

measurement and decision making we refer to Goovaerts, Kaas and Laeven (2008).

Denneberg (1997) introduced the distorted probability measure by means of the

Choquet integral. The notion of distorted risk measure is a specific example of

that concept. A distorted risk measure can be defined as the expected value of a

random financial outcome where the expectation is taken under a transformation

of the cumulative density function. Distortion risk measures are extremely flexible

and simple to use to price risks.

This paper addresses a different issue. Imagine that a new participant in the

insurance services business wants to know how his competitors price risk. Or

imagine that you already know the prices of some risks and that you want to

devise a way to price other risks that is consistent with the prices of the already

priced risks. It turns out that the methodology of risk distortion functions is also

of assistance with these problems, or actually, the relationship between pricing

risk with concave distortion functions and the theory of coherent (spectral) risk

measures is of great use.

For the measurement of market risk, coherent risk measures provide a class of
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measures satisfying a conceptual desideratum that a risk measure may satisfy.

Artzner, Delbaen, Eber and Heath (1999) proposed several properties that a risk

measures must satisfy, thus establishing the notion of coherent risk measure.

However, there are also other risk measures available, e.g., deviation, convex and

spectral risk measures. See Acerbi 2002, Fölmer and Schied (2002), Rockafellar

et.al (2006) and Dhaene, Laeven, Vanduffel, Darkiewicz and Goovaerts (2008).

These families of risk measures are interconnected and some among these have

a direct relationship to coherent measures, in particular spectral risk measures,

which are interesting to us because they provide a bridge between coherent risk

measures and distorted risk measures. Some interesting coherent risk measures,

like Conditional Value at Risk, are distorted risk measures, as we shall see in

Section 2. Another popular distortion function is the Wang Transform, which

when used to price financial derivatives, reproduces well-known results such as

CAPM and Black-Scholes as special cases, see Wang (2000). Other distortion

functions used to value insurance premiums are the dual-power distortion and the

proportional hazards (PH) distortion (Wang, 1996), which are special cases of

the beta distortion function. The proportional hazard distortion functions are a

special subclass of coherent distortion functions that relate nicely to spectral risk

measures.

Clearly, the choice of a distortion function defines a pricing procedure. But, there

are no rules to decide on how one must define the distortion function. We only

know that it amounts to a re-weighting of the initial distribution of the liabilities.

Sometimes, the choice of the distortion function depends on the generic properties

that we want the risk measure to satisfy.

In this paper we provide a nonparametric method for the construction of distortion

functions from the observed prices of risk. But to apply our method, we must

assume that we have enough data to infer the distribution function of the liabilities

to be priced. With the method we propose, the distortion function is not chosen

by an ad-hoc procedure, but to match the market prices of risk. Our method

consists of an application of the method of maximum entropy in the mean to
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obtain the distortion function.

From the mathematical point of view, our technique falls within the category of

solving Fredholm equations (see Dieudonné (1960)), and is classified as a non

parametric technique by statisticians, but is different form the usual way maxen-

tropic techniques that are used in for solving generalized moment problems, and

in particular is different from the way the maximum entropy method has been

used in finance for reconstructing risk neutral densities. The method of maximum

entropy in the mean builds upon the standard method of maximum entropy, but

is a completely different in sprit from the standard method of maximum entropy

in the way it handles the constraints imposed to fit the model to the prices of

benchmark instruments.

As option prices provide a source of information to estimate risk-neutral densi-

ties of the underlying asset price, market prices of risk provide information to

obtain risk distortion functions of risk, while the statistical nature of the liabil-

ity is assumed as known. Many methods to estimate risk neutral distributions

exist, for example, parametric density specifications including a mixture of log-

normals (Ritchey, 1990), a generalized beta (Anagnou-Basioudis et al., 2005).

Other approaches are multi-parameter discrete distributions (Jackwerth and Ru-

binstein, 1996) and densities from smile functions defined by splines (Bliss and

Panigirtzoglou, 2002). For a description of a nonparametric procedure, consider

Aı̈t-Sahalia and Lo (1998). As a very short list of references of the application

of the method on maximum entropy to obtain risk neutral measures consider

Breeden and Litzenberger (1978), Gerber and Shiu (1994) in which finance and

actuarial sciences are related, or Stutzer (1996), Frittelli (2000) or more recently

Choulli and Sticker (2005) to name but a few.

This paper is organized as follows: In Section 2 we introduce the concept of a

distortion measure and recall the relationship of these measures to coherent and

spectral risk measure. In Subsection 2.1 and using the relationship of spectral

and distortion risk measures we establish the Fredholm equation which relates the

distortion function with the observed prices of risk. In Section 3 we present the
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method of maximum entropy in the mean (MEM), which consists of a technique

for transforming an ill-posed linear problem with convex constraints into a simpler

(possibly unconstrained) but non-linear minimization problem. In Section 4 we

present numerical examples. Finally, Section 5 concludes the paper.

2 Preliminaries

We consider a one period market model (Ω,F , P ). The information about the

market, that is the σ-algebra F , is generated by a finite collection of random

variables, F = σ(S0, S1, ...SN), where the {Sj | j = 0, ..., N} are the basic liabilities

traded in the market. We shall model the present worth of our position by X ∈

L2(P ) (the square P -integrable functions), that is, all random variables with finite

variance. Artzner et al (1999) and Delbaen (2003) suggested a set of properties

that a risk measure should satisfy. The risk measures satisfying these properties

are called coherent risk measures. In these papers the risk measure was assigned

to a random variable X describing the worth of a financial position which could

be negative or positive. For actuarial applications, where X denotes liabilities it

makes sense to consider positive valued random variables, and it makes sense to

modify the definition of coherent measure a bit. For that we follow Wirch and

Hardy (1999)

Definition 2.1 A coherent risk measure is defined to be a function ρ defined on

the class of positive bounded or the class of positive random variables with finite

variance, that satisfies the following axioms:

1. A risk measure should be bounded below by the expected value of the loss and

above by the maximal loss: E[X] ≤ ρ(X) ≤ esssup(X).

2. Scale and translation Invariance: For any X ∈ L2 and a, λ ∈ R+ we have

ρ(λX + a) = λρ(X) + a.

3. No unjustified loading, or the risk measure of a certain loss equals the loss.

That is, If X = 1 a.s., then ρ(1) = 1.
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4. Monotonicity: For any X and Y ∈ L2, such that X ≤ Y then ρ(X) ≤ ρ(Y ).

5. Subadditivity: For any X and Y ∈ L2, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

One example of coherent risk measures is the Conditional Value at Risk (CVaR).

This measure indicate the expected loss incurred in the worst cases of the position.

It is the most popular alternative to the Value at Risk, which popular and useful as

it is, does not satisfy the coherence axioms because it may fail to be subadditive.

CV aRα(X) = E[X |X ≥ V aRα(X)] =
1

1 − α

∫ 1

1−α

qX(t)dt .

where qX(t) = V aRt(X) = sup{x : P [X > x] > 1 − t} = inf{x : P (X ≤ x) ≥ t}.

Lets us now turn our attention to distortion functions, to their associated Choquet

integrals and to the risk measures that they define.

Definition 2.2 We shall say that g : [0, 1] → [0, 1] is a distortion function if

1. g(0) = 0 and g(1) = 1.

2. g is non-decreasing function.

Let X be random variable describing losses, having decumulative distribution func-

tion P (X > x) = SX(x), (0 ≤ x < ∞), the Choquet integral with respect to

distortion operator g is defined by

Hg[X] =

∫ ∞

0

g[SX(x)]dx

The Choquet integral introduced above is used to define a risk pricing measure

by setting, ρg(X) = Hg[X]. Thus, distorted risk pricing measures can be thought

of as the expected value of a random financial outcome where the expectation is

taken under a transformation of the cumulative density function. The relationship

between coherence and distortion was studied in Hardy and Wirch (2001) and later

generalized Reesor and McLeish (2003).

Some other commonly employed distortion functions are contained in the following

list. We shall use them below to construct examples.
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1. Dual-power functions:

g(u) = 1 − (1 − u)ν (2.1)

with ν ≥ 1.

2. Proportional Hazard transforms:

g(u) = u
1
γ (2.2)

with γ ≥ 1.

3. Wang’s distortion function:

gα(u) = Φ[Φ−1(u) + α], u ∈ (0, 1) (2.3)

where Φ is the standard Normal distribution and α ∈ R.

We should also mention that CV aRα is a distortion risk measure with respect to

the following distortion function:

g(x) =





x
1−α

if x ≤ α

1 if x ≥ 1 − α

. (2.4)

Spectral risk measures were proposed by Acerbi, see for example Acerbi (2002),

and they can be expressed as general convex combination of the quantiles function

of the risk. For actuarial applications it is convenient to change these conventions

a bit.

Definition 2.3 An element φ ∈ L1([0, 1]) (the class of Lebesgue integrable func-

tions) is called an admissible risk spectrum if

1. φ ≥ 0

2. φ is increasing

3. ‖φ‖ =
∫ 1

0
φ(t)dt = 1.
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Definition 2.4 Let φ ∈ L1([0, 1]) be an admissible risk spectrum. The risk pricing

measure

ρφ(X) =

∫ 1

0

qX(u)φ(u)du

is called the spectral risk measure generated by φ.

The function φ is called the Risk Aversion Function and assigns, in fact, different

weights to different p-confidence level of the left tail. Any rational investor can

express her subjective risk aversion by drawing a different profile for the weight

function φ. The spectral risk measures are a subset of coherent risk measures as

Acerbi proves. Specifically, a spectral measure can be associated with a coherent

risk measures that has two additional properties, law invariance and comonotone

additivity. The risk aversion functions corresponding to the distortion functions

listed above are easy to compute.

1. Dual-power risk aversion functions:

φ(u) = νuν−1. (2.5)

2. Proportional Hazard risk aversion function:

φ(u) =
1

γ
(1 − u)

1
γ
−1. (2.6)

3. Wang’s risk aversion function:

φα(u) = e−αΦ−1(u)−α2/2. (2.7)

It is also of interest to note that Conditional Value at Risk can be thought of as

a spectral risk measure defined by the Risk Aversion Function:

φ(p) = g′(1 − u) =
1

1 − α
1{α≤p≤1} (2.8)

which according to Theorem (2.1) below, is obtained from (2.4) as indicated.

Both in Fölmer and Schied (2004) and in Gzyl and Mayoral (2007), proofs of the

relationship between the admissible spectral function and distortion functions are

presented. For this paper we recall the appropriate variation on the theme, to wit
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Theorem 2.1 Let g a concave distortion function, and let Hg be the associated

distorted risk pricing measure. Then φ(u) = g′(1 − u) defines a spectral measure

ρφ such that ρφ(X) = Hg(X).

To indicate why this theorem must be true, consider the case where the risk X is a

continuous random variable having a strictly positive density with respect to the

Lebesgue measure on [0,∞). The computation goes as follows. The steps consist

of integration by parts and changing variables according to u = 1 − SX(x).

Hg(X) =
∫ ∞

0
g(SX(x))dx =

∫ ∞
0
xfX(x)g′(SX(x))dx

=
∫ 1

0
S−1

X (1 − u)g′(1 − u)du =
∫ 1

0
qX(u)φ(u)du.

2.1 Problem statement

Given the identity relating the distorted price of a positive risk X having a con-

tinuous distribution function F (x)

E∗[X] =
∫ ∞
0
xdF ∗

X(x) =
∫ ∞

0
g(1 − F (x))dx = Hg(X)

=
∫ 1

0
qX(u)g′(1 − u)du = ρφ(X)

where F ∗(x) = 1 − g(1 − F (x)), we state our basic problem as, given the market

price πi of a finite collection of risk positions Xi for i = 1, ...,M , find a function

spectral risk aversion function φ such that

πi = ρφ(Xi) =

∫ 1

0

qXi(u)φ(u)du, i = 1....,M (2.9)

where to accommodate the condition
∫ 1

0
φ(u)du = 1 we choose XM such that

qXM
(u) = 1 and πM = 1.

How to solve Fredholm equations like (2.9) with maximum entropy in the mean

was first described in Gamboa and Gzyl (1997). To actually solve this problem

in practice, the first step consists of a discretization procedure. For that we

consider a partition of [0, 1] at points uj = j/N . The choice of N depends on

the known variability of qX(u) in [0, 1]. Let us define the M × N matrix B by

setting Bi,j = qXi(uj)/N , for i = 1, ...,M and j = 1, ..., N. Set φ(aj) = φj, where
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aj = 1
2
(uj +uj−1) and u0 = 0. With all this, the problem (2.9) can be restated as:

Solve

Bφ = π; φ ∈ Ko. (2.10)

where the constraint set K0 ⊂ RN is a convex set defined in this case by

Ko = {(φ1, ..., φN) |φ1 < ... < φj < φj+1 < ... < φN}.

To simplify the description of the constraints, we set φ1 = ψ1, φ2 = ψ1 + ψ2, ...

and φN = ψN + ... + ψ1, or φ = Cψ where C is the obvious lower diagonal

matrix describing the change of coordinates. Setting A = BC we can restate our

discretized problem as

Aψ = π; ψ ∈ K. (2.11)

where now the convex constraint set is K = RN
++, i.e., the positive orthant in RN .

Clearly, once the vector ψ is at hand, the φ is easily recovered.

3 The basics of maximum entropy in the mean

3.1 Basic methodology

The method of maximum entropy in the mean (MEM) is a technique for transform-

ing an ill-posed linear problem with convex constraints like (2.11) into a simpler

(possibly unconstrained) but non-linear optimization problem. The number of

variables in the auxiliary problem being equal to the number of equations in the

original problem, M in our case. To carry out the transformation one thinks of

the ψj there as the expected value of a random variable Ψj with respect to some

measure Q which is to be determined. The basic datum is a sample space (Ω,F)

on which Ψ is to be defined. In our setup the natural choice is to take Ω = K,

F = B(K), the Borel subsets of K, and Ψ = idK as the identity map.

To continue we need to select a reference or prior (but not in the Bayesian sense)

measure dQo(ξ) on (Ω,F). The only restriction that we impose on it is that

the closure of the convex hull of supp(Q) is K. This prior measure embodies
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knowledge that we may have about ψ. And to get going we define the class

P = {Q |Q << Qo; AEQ[Ψ] = π}. (3.1)

and observe now that the algebraic problem (2.11) is transformed into the problem

consisting of finding a measure Q ∈ P. Note that for any Q ∈ P having a strictly

positive density ρ = dQ
dQo , then EQ[Ψ] ∈ int(K). This follows since expectation

is basically a linear convex combination. The procedure to explicitly produce

such Q’s is known as the method of maximum entropy, exponential tilting or the

Esscher transform. The first step of which is to assume that P 6= ∅, which amounts

to say that our problem has a solution and define

So
Q : Q → [−∞,∞)

by the rule

So
Q(Q) = −

∫

Ω

ln(
dQ

dQo
)dQ (3.2)

whenever the function ln( dQ
dQo ) is Q-integrable and So

Q(Q) = −∞ otherwise. This

entropy functional is concave on the convex set P. To guess the form of the

density of the measureQ∗ that maximizesSo
Q is to consider the class of exponential

measures on Ω defined by

dQλ =
e−<λ,AΨ>

Z(λ)
dQo (3.3)

where the normalization factor is

Z(λ) = Eo
Q[e−<λ,AΦ>].

Here λ ∈ RM . If we define the dual entropy function

Σ(λ) : D(Q) → (−∞,∞]

by the rule

Σ(λ) = lnZ(λ)+ < λ, π > (3.4)

or Σ(λ) = ∞ whenever λ /∈ D(Q) ≡ {µ ∈ RM | Z(µ) <∞}.
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It is easy to prove that, Σ(λ) ≥ SQ(P ) for any λ ∈ D(Q), and any P ∈ P. Thus

if we were able to find a λ∗ ∈ D(Q) such that Pλ∗ ∈ P, we would have solved our

problem. To find such a λ∗ it suffices to minimize (the convex function) Σ(λ) over

(the convex set) D(Q). We leave for the reader to verify that if the minimum is

reached in the interior of D(Q), then Pλ∗ ∈ P.

3.2 Two possible solution schemes

As is clear from the statement of (2.11), the actual implementation scheme de-

pends on the assumptions that we place on the constraint set K. Here we shall

propose two possible alternatives consisting of assuming K to be bounded or un-

bounded. And once this aspect of the modeling process is decided, the other

degree of freedom that one has corresponds to the choice of the reference measure

Qo.

3.2.1 The bounded case

This choice is adequate when we have reasons to assume the φj are bounded,

which is a natural assumption. Thus let us assume that for appropriate a and

b, we know that a ≤ ψj ≤ b∀j. This amounts to assuming that K = [a, b]N. We

should add that all the a′s and b′s could be assumed different with no problem

at all. Also, since any point in [a, b] is a convex combination of the end points, a

simple assumption consists of putting

dQo(ξ) =

N∏

j=1

(pδa(dξj) + qδb(dξj)). (3.5)

We use the standard notation δa(dx) to denote the unit point mass measure con-

centrated at a (the Dirac measure at a). The parameters p, q are such that

p + q = 1 and they reflect the possible bias of the ψ′
js towards one of the ends of

the interval. When no bias is assumed, one chooses p = 1/2. A similar assumption

would consist of choosing a uniform distribution on [a, b].
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The next step consists of computing the normalization factor Z(λ). Clearly

Z(λ) =
N∏

j=1

ζ((A∗λ)j)),

where ζ(τ ) is the Laplace transform of pδa(dx) + qδb(dx), that is

ζ(τ ) =

∫
e−xτpδa(dx) + qδb(dx) = pe−aτ + qe−bτ .

The following step has to carried out numerically. It consists of finding the mini-

mizer λ∗ in (3.4). Once that is accomplished, it is easy to see that the maxentropic

reconstruction ψ∗ is given by

ψ∗
j = ap∗j + bq∗j , (3.6)

where

pj =
( e−a(A∗λ∗)j

e−a(A∗λ∗)j + e−b(A∗λ∗)j

)
, q∗j = 1 − p∗j .

And now the φj must be recovered from the ψj as described at the end of Section

2.1. Notice that the MEM procedure has shifted the parameters of the distribu-

tion. That is the post-data, maximum entropy distribution Q∗ is different from

the prior (reference) measure Qo in two respects. First, the components of ξ are

no longer independent (the distribution is no a product on 1-dimensional distri-

butions), and second, the original bias in the choice of p and q has been modified.

3.2.2 The unbounded case

Now we shall see one way of solving (2.11) when the constraint space is K = RN
++.

Now we may consider a product of Γ(a, b) as our reference measure, that is

dQo(ξ) =
N∏

j=1

(baξa−1
j e−bξdξj

Γ(a)

)
. (3.7)

As above, the next step consists of finding the normalization function Z(λ).Again,

our assumption leads to a product

Z(λ) =
N∏

j=1

ζ((A∗λ)j)),
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where now the ζ(τ ) are Laplace transforms of the Γ(a, b), that is ζ(τ ) =
(

b
τ+b

)a

,

and therefore

Z(λ) =

N∏

j=1

( b

(A∗λ)j + b

)a

.

The following step in the order of business consists of minimizing (3.4) to obtain

λ∗ with which to construct Q∗. Once this has been carried out, according the

prescriptions at the beginning of Section 2, the MEM reconstruction of ψ turns

out to be

ψ∗
j =

a

((A∗λ∗)j + b)
. (3.8)

We leave it up to the reader to double check that this time Q∗ also happens to be

a Γ distribution with different parameters, and that the components of ξ are not

independent with respect to Q∗.

4 Numerical examples

This Section is devoted to analyzing a few of the many possibilities that may be

dealt with. We shall begin with the simplest situation consisting of assuming that

we are presented with the risk price of a liability which we known to have been

priced coherently, but with a distortion function unknown to us. Recall that we

are assuming as well that the distribution function of the risk is available to us,

and obtaining it from the available data is the first step to be solved to imple-

ment our method. We shall consider a risk known to be distributed according to

either a U(0, 1), a Pareto(0, 2), a Gamma(1, 2) or a Beta(2, 4) distribution. The

computation of the risk price π of each liability was carried out with a distortion

function of the (2.5) or (2.6) or (2.7) type. The parameters we use throughout are

1.5 for the proportional hazard and the dual power distortion function, and 0.05

for the Wang distortion function.

In Table 1 we indicate the reconstruction errors computed as |πk − (Aφ)∗k|, where

φ∗ is found as described in Section 3.2.1. For this we considered p = q = 1/2 and

a = 0; b = 6.
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Table 1: Reconstruction errors

Distortion Wang PH DP

π error π error π error

Uniform 0.51 0.577 × 10−10 0.58 0.46 × 10−12 0.4 0.29 × 10−10

Pareto 3.96 0.91 × 10−10 4.03 0.46 × 10−12 3.0 0.09 × 10−10

Gamma 2.69 0.81 × 10−11 2.2 0.29 × 10−10 1.55 0.14 × 10−11

Beta 0.34 0.96 × 10−11 0.34 0.43 × 10−10 0.26 0.79 × 10−10

In Figures 1 to 3 we plot the φ∗’s obtained using (3.6) and the identity Φ∗ = CΨ∗

for each spectral risk function, be it respectively, of Wang, proportional hazard

or dual power types, as well as the original (true) φ itself. In each case the

only datum was a the price of a different risk (either uniformly, Pareto, Beta

or Gamma distributed) determined by the corresponding spectral risk aversion

function. For example, in Figure 2, the dotted curve represents the reconstructed

φ∗ when the datum was the price of a U(0, 1) risk computed with a proportional

hazard risk aversion function. We shall see below that the reconstruction improves

as the number of risk prices taken into account increases. In this regard, the

important thing is not that the reconstructed φ∗’s look like the true one, but that

the reconstructed error is small. These φ∗’s can then be used to price other risks.

In Table 2 we do the following comparison. We consider a U(0, 2) liability and

compute is risk price according to the same three spectral risk functions as above,

and we compare it with the risk price computed with the φ∗ computed with the

reconstructed spectral risk functions obtained above. For example, in the second

row of the first column π∗ = 0.95 denotes the price computed according to the

discrete version of (2.9) where X ∼ U(0, 2) and φ∗ is the spectral risk function

determined by the Pareto(0, 2) risk computed with the (2.7) spectral function.
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Figure 1: Reconstructed φ’s from one price determined by a Wang distortion
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Figure 2: Reconstructed φ’s from one price determined by a proportional hazard

distortion
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Figure 3: Reconstructed φ’s from one price determined by a dual power distortion
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Distortion Wang PH DP

π∗ error π∗ error π∗ error

Uniform 0.94 0.00039 1.02 0.0033 0.76 0.001

Pareto 0.95 0.003 1.03 0.00019 0.74 0.002

Gamma 0.98 0.002 1.05 0.002 0.72 0.003

Beta 0.96 0.003 1.03 0.004 0.77 0.002

Table 2: Error in risk price estimated with reconstructed φ∗.

In Table 3 we display the reconstruction error of each risk when the market prices

of 4 liabilities are used to reconstruct one single spectral risk function. This time

we considered a U(0, 1), a Pareto(0, 2), a Gamma(2, 4) and a Beta(1, 2), and

the 4 liabilities were simultaneously priced with a (2.5), a (2.6) and a (2.7) risk

aversion functions. Again the reconstructed φ∗ was obtained with the method

described in Section 3.2.1, with parameters p = q = 1/2 and a = and b = 6. In

Figure 4 we display the original spectral function φ and the reconstructed risk
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Figure 4: Reconstructed φ’s from four prices.
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aversion function φ∗, when the price of one of four different liabilities, computed

with one of the distortion functions was given as input. Surprisingly the method

recognizes the distortion function regardless on the liability.

Table 3: Error of reconstruction risk price

Wang PH DP

π error π error π error

0.52 0.12 × 10−8 0.55 0.15 × 10−5 0.39 0.41 × 10−6

4.01 0.001 × 10−8 4.15 0.07 × 10−5 2.79 0.012 × 10−6

0.32 0.44 × 10−8 0.35 0.34 × 10−5 0.25 0.88 × 10−6

2.53 0.02 × 10−8 2.00 0.044 × 10−5 1.60 0.07 × 10−6

We compared the price of a U(0, 2) liability computed with the same spectral

risk aversion functions with the price computed with the reconstructed φ∗. The

prices obtained, and absolute vales of the differences in price are: πDP = 0.7196
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and |πDP − π∗| = 0.0002; πWang = 1.008 and |πWang − π∗| = 2.11 × 10−5 and

πPH = 1.02 with error |πPH − π∗| = 2.54 × 10−6.

In table 4 we present results of a reconstruction process similar to those in table 3,

but this time the procedure employed for the reconstruction is the one described

in Section 3.2.2, where the parameters of the prior were a = 3 and b = 1. .

The graphs of the reconstructed and original risk aversion functions are visually

indistinguishable even though the reconstruction error are not small. This method

is sensible when the ψ’s can take arbitrarily large values.

Table 4: Reconstruction errors using the second method

Wang PH DP

0.187 × 10−5 0.089 × 10−3 0.139 × 10−4

0.009 × 10−5 0.006 × 10−3 0.002 × 10−4

0.712 × 10−5 0.173 × 10−3 0.297 × 10−4

0.025 × 10−5 0.003 × 10−3 0.016 × 10−4

To finish, in Figure 5 we present the risk aversion function obtained when we

consider a U(0, 1) liability and price it by the mean plus a small load. Actually we

considered π = (1 + 0.05). The reconstructed spectral function is constant except

at the ends of the interval, meaning that the corresponding distorted function re

weights only the small and the large probability events. But this flatness should

not be interpreted according to the standard method of maximum entropy. Recall

that we use the method of maximum entropy at each interval of the partition at

which we reconstruct φ.

5 Concluding remarks

To sum up, when we are presented with the of prices of a collection of risks, all

of them having been obtained with a common coherent risk measure described by

a concave distortion function, it is possible to determine the distortion function
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Figure 5: φ∗ reconstructed from a loaded price
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(or its associated risk aversion function) and to use it to consistently compute

the price of other liabilities. When presented with the price of a single risk, it is

possible to determine a risk aversion function that yields that price, and then use

it for pricing other risks.

The method we propose, effective as it is, has to be applied with care. Not so

much because of numerical issues, but because of modeling issues. The main

reason being that the reconstruction depends on the choice of a prior constraint

space and a prior measure Q0, and of course, on the quality of the data. The

first and the second issues are closely tied up, for the input data vector π must

fall in the image B{E∗
Q[Φ] : Φ ∈ K0} of all possible spectral functions. In this

regard the issues are that, on one hand, the data risk price vector π may not have

been the result of a valuation process with a single distorted risk function, and

on the other, market risk prices may deviate from their theoretical valuations.

Both of these may make π /∈ B{E∗
Q[Φ] : Φ ∈ K0}. In this case the method of

maximum entropy in the mean is not expected to produce an answer at all. In
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order to overcome these issues we shall provide an extension of the method in a

forthcoming note.

The are no issues regarding the size of the partition. As the mesh becomes smaller,

the approximation becomes better as shown in Gamboa and Gzyl (1997). The

only thing to be kept in mind is not to include the extreme points of the interval

[0, 1] for there the distortion function may diverge to ∞.
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