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1. Introduction 

 

This paper deals with the analysis of international tourist arrivals to Australia. It 

examines the degree of persistence and seasonality in several arrival series. The 

innovation of the paper resides in the adoption of a model that simultaneously analyses 

long run persistence and seasonality in tourism arrivals with fractional integration.  

 

 Two important features commonly observed in tourism data are the persistence 

across time and the seasonality. Modelling the degree of persistence is important in that it 

can reflect the nature and the effects of the shocks in tourism data. Thus, in the event of 

an exogenous shock, different policy measures should be adopted depending on their 

degree of persistence. If the shock is positive and the series is mean reverting, strong 

measures must be adopted to maintain the series at a higher level. On the other hand, if a 

shock is negative and the series contain, for instance, a unit root, the effect of that shock 

will be permanent, and again strong measures should be adopted to bring the series back 

to its original trend. 

 

Seasonality is another important feature that is present in many quarterly and 

monthly tourism data and thus it should be modelled according to the specific 

characteristics of the data. However, there is little consensus on how seasonality should 

be treated in empirical applications on aggregate data. Since the statistical properties of 

different seasonal models are distinct, the imposition of one kind when another is present 

can result in serious bias or loss of information, and it is thus useful to establish what 

kind of seasonality is present in the data. 
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The motivation for the present research stems from the following considerations: 

First, we aim to analyse the persistent behaviour of Australian inbound tourism over 

time, using both fractional integration and autoregressions. Secondly, we aim to 

introduce fractional integration that identifies persistence in a continuous range between 

zero and one and not in the dichotomic range of zero and one as it is the case in the 

standard time series methods. Finally, we aim to test the forecasting accuracy of different 

competitive models, including those based on integer degrees of differentiation, in order 

to determine the one that best forecasts Australian tourism arrivals.  

 

The main contribution of this paper is that it adopts simultaneously fractional 

integration and seasonal autoregressions to analyze the persistence in tourism arrivals to 

Australia, previously analysed by standard methods such as AR(I)MA models. The paper 

will proceed as follows: Section 2 presents the contextual setting. Section 3 presents the 

literature revision. Section 4 briefly describes the methodology employed in the paper. 

Section 5 is devoted to the empirical results. Section 6 deals with the forecasting 

accuracy of the selected models, while Section 7 contains discussions and concluding 

comments. 

 

2. Contextual setting 

 

The tourism industry is a major driver of the Australian economy.  Figures from 

2006-2007, for example, indicated that the industry contributed $67.8 billion to Gross 

Domestic Product (GDP) and generated employment for around 853,000 persons.   
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Domestic day trips1 account for a major share of total tourism expenditure (close to 

19%).  International visitors are also a major segment accounting for about 18.0% of total 

visitor expenditure. A major boost in the international market occurred in  2007-08 where 

around 5.6 million international arrivals, up 27.8% from 4.17 million in 1997-98. In 

Figure 1 we present a summarised trend of the international tourism arrivals to Australia. 

Generally, the tourism industry has always achieved growth, especially between 1981 

and 2001 (9.1 % per annum). However, the growth started to decrease gradually between 

2000 and 2008 (1.6% per annum), due to many negative factors including the impacts of 

September 11th, Bali bombing and global financial crisis.  Major visitor origin countries 

over the years included: New Zealand - 22.3% of visitors; North West Europe - (i.e. 

Germany and UK) - 21.5%; Southeast Asia (i.e. Indonesia, Singapore etc.) - 12.1%; 

Northeast Asia (i.e. Japan and China) - 27.1%; and the Americas (North and South) - 

10.7%.  Recently, strong growth has occurred from visitors from China, India, Korea, 

Hong Kong, Singapore, New Zealand and the UK.    

 

[Insert Figure 1 about here] 

 

 The Australian tourism industry, similar to any other international industries is also 

subject to fluctuations in the domestic and international market. External environmental 

factors such as unfavourable exchange rates, high fuel prices and interest rates, as well 

airline schedule rationalisation due to fuel cost escalation, has undoubtedly influenced 

recent industry performance. Over the five years period to 2008-09, industry revenue is 

                                                           
1 This is defined by Tourism Research Australia for survey purposes as domestic visitors aged 15 years and 
over who make a round trip distance of at least 50 kilometres, are away from home for at least four hours 
and who do not spend a night away from home as part of their trip. 
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forecast by IBISWorld to decrease at an average annual real rate of 1.4%, due to recent 

more subdued domestic and international economic growth, together with some rise in 

global unemployment. 

 

 Within this critical period, the present study thus takes an additional importance. 

As the study focuses on analysing the behaviour of tourism arrivals to Australia, the 

results can directly assist in future policy formulation towards improving tourist 

numbers. The study is also innovative in terms of adopting more accurate methodologies 

which aim to improve the reliability and robustness of the results reported.  In the next 

section, we present a review of the literature before describing in more details the 

methodology used in the study.   

 

 

3. Persistence in tourism demand  

 

An important feature observed in tourism time series data is the persistence in its 

behaviour (see, for example, Maloney and Montes Rojas, 2005; Bhattacharya and 

Narayan, 2005; Narayan, 2005). Maloney and Montes Rojas (2005) documented high 

levels of persistence on tourist flows from eight origin countries to 29 Caribbean 

destinations from 1990–2002. On the other hand, Narayan (2005), Lim and McAleer  

(2000, 2001a, 2002), Goh and Law (2002), and Lim and Pan (2005) provided 

contradicting results regarding the presence of unit roots in different tourism data. Other 

papers documented the persistence in volatility models of tourism demand (see, for 

example, Hoti et al. , 2006a, b; and Kim and Wong, 2006 among others).  
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It is worth noting also that several studies have attempted to account for 

seasonality in modelling tourism demand. Alleyne (2006) has for example used the 

HEGY procedure to account for stochastic seasonality in tourism arrivals to Jamaica. His 

results indicated that forecasting can become more accurate if seasonal unit roots are pre-

tested. Similar results were also reported by Alleyne (2006), Gustavsson and Nordstrom 

(2001), Diebold and Kilian (2000), Kulendran and Witt (2003), Tumer and Witt (2001), 

who indicated that the unit root pretesting routinely improves forecast accuracy.  

 

Other studies on seasonality of tourism data include Lim and McAleer (2001b), 

Kulendran and Witt (2003), Rodrigues and Gouveia (2004), Kulendran and Wong 

(2005), Coshall (2006) and Lee et al. (2008). In general, most of these papers employed 

standard econometric techniques based on unit roots or seasonal unit root test statistics 

(Dickey and Fuller, ADF, 1979; Dickey et al., DHF, 1984; Phillips and Perron, PP, 1988; 

Kwiatkowski et al., KPSS, 1992; Hylleberg et al., HEGY, 1990; etc.). These methods, 

though highly efficient in some cases, have the drawback that they have extremely low 

power in the context of fractional alternatives. Thus, if the series is I(d) and d is different 

from 0 or 1, the use of these methods is not appropriate. This has been well documented 

by authors such as Diebold and Rudebusch (1991), Hassler and Wolters (1994), Lee and 

Schmidt (1996) and others. 

 

The analysis of the persistence in time series has important policy implications 

since the effect of a given shock on a series is different depending on its univariate 

properties. When a series is stationary and mean reverting (i.e., d < 0.5), the effect of a 
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given shock on it will have a transitory effect, disappearing its effect fairly rapid; if the 

series is non-stationary but mean reverting (0.5 � d < 1) the shock still will be transitory 

though it takes longer time to disappear completely, while it will be permanent if the 

series is non-stationary with d � 1. While the classical approach to study the stationarity 

of the series only allows for the I(1)/I(0) case,  tourism series in this paper are allowed to 

be I(d), where d can be any real number. The estimation of the fractional differencing 

parameter d for each of the tourism series we analyze here will give us an idea of the 

stochastic nature of the series, which is clearly related to the level of persistence.  

 

The fractional integration approach allows to identify the level of persistence of a 

series in a continuous way and therefore overcomes the restrictive view that traditional 

econometrics identify a series either persistent or non-persistent, but is unable to evaluate 

the middle term of the persistence level. (See, Gil-Alana and Hualde, 2009, for a recent 

review of fractional integration in time series). In this paper, we also extend the analysis 

of fractional integration to the seasonal part of the process. Thus, instead of restricting 

the model to be seasonal I(1) (as is the case in numerous empirical studies) we also allow 

for seasonal fractional integration, where the seasonal differencing parameter may be a 

fractional value, and, moreover, we consider a general process that includes fractional 

integration at both the zero and the seasonal frequencies in a single framework. 
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4. Methodology 

 

In this section we describe the three basic specifications we employ to describe 

the two main characteristics of the data, which are the persistence and the seasonality.2 

In model 1 we assume that the series is I(d) so that the fractional differencing parameter 

d describes the long run persistence. On the other hand, seasonality is described 

throughout a simple seasonal AR(1) process. Therefore, model 1 is described as: 

.;)1(; 12 ttsttt
d

tt uuuxLxty ερβα +==−++= −  (1) 

where yt is the time series we observe (in our case, the total number of monthly arrivals 

in Australia); � and � are the coefficients associated to the intercept and a linear time 

trend respectively, and xt are the regression errors that are assumed to be I(d); finally the 

disturbances are modelled in terms of a seasonal AR(1) process where �s describes the 

seasonal (short run) time dependence.  In this context, if d > 0, xt (and thus yt) is said to 

be long memory, so-named because of the strong association between observations 

widely separated in time. This process is characterized because the spectral density 

function is unbounded at the zero frequency.3 Applications using this type of model in 

tourism time series are among others the papers of Cuñado et al. (2004, 2008). 

 

                                                           
2  Seasonal dummy variables were discarded in this work because of the observed seasonal changing 
patterns in the data. 
3 The origin of these processes is in the 1960s, when Granger (1966) and Adelman (1965) pointed out that 
most aggregate economic time series have a typical shape where the spectral density increases dramatically 
as the frequency approaches zero. However, differencing the data frequently leads to overdifferencing at 
the zero frequency. 
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In model 2 we change the nature of the process and impose a long memory 

process on the seasonal structure of the series, while the short term evolution is described 

through an AR(1) process. In other words, we consider now the model, 

,;)1(; 1
12

ttttt
d

tt uuuxLxty s ερβα +==−++= −   (2) 

where ds can be again a fractional value. Here, if ds > 0, xt (and yt) is defined as a 

‘seasonal long memory’ process, so-named because of the strong association (in the 

seasonal structure) between observations apart in time. Few empirical applications have 

been carried out in relation to this model. Porter-Hudak (1990) applied a seasonally 

fractionally integrated model of form as in (2) to quarterly U.S. monetary aggregate with 

the conclusion that a fractional model could be more appropriate than standard (seasonal) 

ARIMAs. Advantages of seasonally fractionally integrated models for forecasting are 

illustrated in Ray (1993) and Sutcliffe (1994), and another empirical application can be 

found in Gil-Alana and Robinson (2001). In the context of tourism time series, Gil-Alana 

(2005) employed this approach using US international monthly arrivals. 

 

Finally, we combine the two approaches described in (1) and (2) in a single 

framework, and consider a model with two fractional differencing parameters, one 

referring to the long run evolution (d) and the other affecting the seasonal structure (ds). 

In other words, model 3 is described by 

,)1()1(; 12
tt

dd
tt uxLLxty s =−−++= βα  (3) 

 

and we assume here that ut is white noise (model 3a), AR(1) (model 3b) and a seasonal 

AR(1) process (model 3c).  
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In all cases we will consider the three standard cases of no regressors in the 

undifferenced regressions (i.e., � = � = 0 a priori), an intercept (� unknown and � = 0 a 

priori), and an intercept with a linear time trend ((i.e., � and � unknown). As mentioned 

earlier, deterministic seasonal dummies were not considered given the changing seasonal 

pattern observed in the data. 

 

Remember once more that in model 1, d is the parameter describing the long run 

persistence, while �s indicates the degree of seasonal (short run) persistence. In model 2, 

ds determines the degree of seasonal long memory or seasonal persistence while the non-

seasonal persistence is described throughout the parameter �. In model 3, we include 

both long run and seasonal long range persistence throughout the parameters d and ds. 

 

 The three models described above include most of the standard cases examined in 

the literature. Thus, for example, in model 1, if d = 0 we obtain the classical “trend 

stationary” representation with seasonal AR(1) disturbances, while if d = 1 we obtain the 

“unit root” model advocated by many authors in the tourism literature. Similarly, in 

model 2, if ds = 1, we have a “seasonal unit root” model (see, e.g., Beaulieu and Miron, 

1993), and if d = ds = 1 in model 3, the classical “airline model” of Box and Jenkins 

(1976). 

 

 The methodology employed in this paper is based on the Whittle function in the 

frequency domain (Dahlhaus, 1989) along with a testing procedure developed by 

Robinson (1994) that permits us to test all the above specifications in a unified treatment. 
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The latter is a Lagrange Multiplier (LM) procedure that is supposed to be the most 

efficient method in the context of fractional integration. It tests the null hypothesis Ho: d 

(or ds) = do for any real value do, in either model (1), (2) or (3), and given its standard 

(normal) limit distribution we can easily build up confidence bands for the non-rejection 

values.4 The functional form of this procedure is described in the Appendix. 

 

5. Data and Results 

 

The time series data considered are the numbers of monthly international tourist 

arrivals in Australia classified with intended length of stay. The variables considered are 

as follows: those with intended length of stay less than 1 month (Series 1), between 1 and 

2 months (Series 2), between 2 and 3 months (Series 

3), between 3 and 6 months (Series 4) and between 6 and 12 months (Series 5) are 

considered. The data are available from the Australian Bureau of Statistics publications 

(ABS Catalogue No. 3401.0). Each series consists of 220 monthly observations covering 

the period from 1991m1 to 2009m1. Table 1 describes each of the time series examined 

in the paper, and Figure 2 displays the time series plots.  

 

[Insert Table 1, Figure 2 and Table 2 about here] 

 

Summary statistics for the five time series are also reported in Table 2. We 

observe in this table that the highest mean corresponds to Series 1 and the lowest value to 

                                                           
4 Empirical applications based on this procedure can be found in Gil-Alana and Robinson (1997) and Gil-
Alana (2000) among many others. 
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Series 5. Even though normality is not satisfied as confirmed by the Jarque-Bera test,    

this is not a serious matter in our work since Robinson’s (1994) method is robust against 

non-Gaussian disturbances. 

 

[Insert Tables 3 and 4 and Figure 3 about here] 

 

 

 Table 3 displays for each series the estimates of d in model 1 for the three standard 

cases of no regressors, an intercept, and an intercept with a linear trend. The first issue 

we observe in this table is that the estimated values of d are in all cases positive and 

smaller than 1, providing thus evidence in favour of fractional integration, and clearly 

rejecting the two classical I(0) and I(1) representations. Moreover, the time trend 

coefficients are statistically significant in all cases and thus, we focus on this model in 

Table 4, reporting the estimates for each time series. We observe significant differences 

throughout the series, with values of d ranging from 0.118 (series 2) to 0.307 (series 3). 

In all cases, we reject the null hypotheses of d = 0 (a seasonal AR(1) process) and d = 1 

(a unit root). Also, the seasonal AR coefficients are very large and close to 1 in all series 

implying a large degree of seasonal persistence. Adopting integer degrees of 

differentiation, we also estimated seasonal ARMA components, and the results, reported 

in Table 5, again show large AR coefficients in the five series. Figure 3 displays the first 

60 impulse responses for each of the series according to the results of the fractional 

model in Table 4. We observe a strong seasonal pattern, with values decreasing very 

slowly. Due to this, we also examined the possibility of seasonal first differences in these 

data, and perform the tests of Dickey, Hasza and Fuller (DHF, 1984) and Beaulieau and 
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Miron (1993) to check for seasonal (monthly) unit roots. The results, though not 

reported, suggest in all cases that seasonal first differences might be appropriate. Figure 4 

displays the differenced time series plots and seasonality seems to be removed in the 

series.5 

 

[Insert Figure 4 and Tables 5 and 6 about here] 

 

 Table 6 displays for each time series the best specification assuming that seasonal 

first differenced are required in the data. We observe that for two of the series, an 

ARMA(1, 1) model seems to be the best specification in this context, while a simple 

AR(1) is sufficient to describe the short run dynamics in the remaining three series. 

However, imposing an integer degree of seasonal differentiation in the data is a very 

restrictive model to describe the nonstationary seasonality. Thus, we extend the seasonal 

unit root case and focus on model 2 allowing for seasonal fractional integration and non-

seasonal AR(1) disturbances. Table 7 reports the results again for the three cases of no 

regressors, an intercept, and an intercept with a linear trend, and all the values are again 

in the interval (0, 1), clearly rejecting the seasonal I(1) model. All except one series 

(series 4) present values which are above 0.5 implying now nonstationarity. Looking at 

the estimates in the context of a linear trend, the values are reported in Table 8 and their 

corresponding impulse responses are displayed in Figure 5. 

 

[Insert Tables 7 and 8 and Figure 5 about here] 

                                                           
5 Note however that seasonal (and non-seasonal) unit root tests may have very low power if the alternatives 
are of a fractional form. (See, e.g., Diebold and Rudebusch, 1991; Hassler and Wolters, 1994, etc. though 
these papers refer exclusively to the zero frequency unit root tests). 
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 The values substantially differ across the series ranging from 0.484 (series 4) to 

0.747 (series 2). Note that the largest (non-seasonal) AR coefficient takes now place in 

series 1, with � = 0.422. According to this table, series 1 and 2 are the most persistent 

ones. Figure 5 displays the first 60 impulse responses for this model and it can be seen 

that seasonality still account for an important component of the series. 

 

[Insert Tables 8, 9 and 10 about here] 

 

 Finally, we employ model 3. The results are reported in Tables 9, 10 and 11, 

respectively for the cases of white noise, AR(1) and seasonal AR(1) disturbances. Once 

more, most of the estimates lie between 0 and 1. The only exceptions are some cases in 

Table 10 (with non-seasonal AR(1) ut) with values of d being negative in some cases, 

and in Table 11 (seasonal AR(1) ut) with negative values in ds. These negative values 

(indicating anti-persistence) are clearly a consequence of the competition between the 

fractional and the AR polynomials in describing the time dependence.6 

 

[Insert Tables 12, 13 and 14 about here] 

 

 Tables 12, 13 and 14 report the parameter estimates for each of the selected models 

assuming that the disturbances are respectively, white noise, AR(1) and seasonal AR(1). 

                                                           
6 Note that d and � both describe the non-seasonal dependence while ds and �s describes the seasonal 
dependence. The difference between the long memory parameters (d  and ds) and the short memory ones (� 
and �s) is that the former use a hyperbolic rate while the latter use a much faster exponential rate of decay 
in the autocorrelations. 
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We observe that for series 1, 2 and 5, the models include an intercept and a linear time 

trend, while for series 3 and 4 an intercept is sufficient to describe the deterministic part. 

We observe that practically all the fractional differencing parameters are in the interval 

(0, 1), the only exception being ds in series 5 with seasonal AR disturbances (model 3c, 

in Table 14). We also notice that ds is substantially higher than d in the majority of the 

cases, implying a stronger degree of dependence in the seasonal part than in the long run 

behaviour. 

 

 In what follows we focus on model 3a (white noise disturbances) with a linear time 

trend (Table 12). We choose this specification for the error term based on LR tests. 

Moreover, we conducted several tests for serial correlation in the d-differenced series in 

Table 12 (Box-Pierce-type statistics), and we do not find evidence of further need of 

autocorrelation. A remarkable finding observed in this table is that the five series are 

nonstationary with respect to the seasonal component (ds > 0.5). Moreover, they are also 

non-stationary with respect to the long run behaviour. Note that although the d-

coefficients are smaller than 0.5 (and would suggest stationarity at first sight), the 

contribution to the long run or zero frequency should also include the seasonal 

integration order. The reason for this is that the polynomial (1- Ls)ds can be decomposed 

into (1-L)dsS(L)ds, where S(L) = (1 + L + L2 + … + Ls-1) is formed exclusively by the 

seasonal frequencies, and thus (1-Ls)ds includes the zero frequency throughout (1-L)ds.7 

Therefore, according to the results in this table, the contribution to the long run or zero 

frequency for series 1 is 0.98 (0.32 + 0.66). Similarly, for series 2 is 1.05; 0.87 for series 

3, 0.81 for series 4, and 0.77 for series 5.  

                                                           
7 Thus, for example, (1 - L4) = (1 - L)(1 + L + L2 + L3) = (1 - L)(1 + L)(1 + L2). 
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 So far we have presented for each of the five time series, three potential 

specifications based on long range dependence using fractional and autoregressive 

polynomials, along with other more standard specifications based on non-seasonal and 

seasonal ARIMA models. In the following section, we will try to determine which one is 

the preferred model for each of the five arrivals series examined. 

 

6. Forecasting performance 

 

In this section we compare the models presented in Section 5 in terms of their 

forecasting performance. Standard measures of forecast accuracy are the following: the 

Mean Absolute Percentage Error (MAPE), the Mean-Squared Error (MSE), the Root-

Mean-Squared Error (RMSE), the Root-Mean-Percentage-Squared Error (RMPSE) and 

Mean Absolute Deviation (MAD) (Witt and Witt, 1992). On the other hand, there exist 

several statistical tests for comparing different forecasting models. One of these tests, 

widely employed in the time series literature, is the asymptotic test for a zero expected 

loss differential of Diebold and Mariano (1995).8 The loss differential is defined as 

),()( htjthtitt egegd −− −=  

where )( htiteg −  is the loss function, and htite −  is the corresponding h-step ahead 

forecast error for the model i, .ˆ htitthtit yye −− −=  Given a covariance stationary 

sample realization {dt}t=T+h,…,T+n, the Diebold-Mariano statistic for the null hypothesis of 

                                                                                                                                                                            
 
8 An alternative approach is the bootstrap-based test of Ashley (1998), though this method is 
computationally more intensive. 
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equal forecast accuracy (i.e., E(dt = 0)) is given by: 
)(ˆ dV

d
, where d is the sample mean 

loss differential,  �
+−

=
+=

+=

nTt

hTt
td

hn
d ,

1
1

 and where )(ˆ dV  is a consistent estimate of the 

asymptotic variance of ,d  which is computed as an unweighted sum of the sample 

autocovariances, that is, ,ˆ2ˆ
1hn

1
)d(V̂

1h

1k
k0 �
�
�

�
�
�
�

�
� γ+γ

+−
=

−

=
 where 

1
1ˆ

+−
=

hnkγ  

� −−
+

++=
−

nT

khTt
ktt dddd ).()(  Harvey et al. (1997) note that the Diebold-Mariano test 

statistic could be seriously over-sized as the prediction horizon, h, increases, and 

therefore provide a modified Diebold-Mariano test statistic given by: 

,
n

n/)1h(hh21n
DMDMM

−+−+
=−  

where DM is the original Diebold-Mariano statistic. Harvey et al. (1997) and Clark and 

McCracken (2001) show that this modified test statistic performs better than the DM test 

statistic in finite samples, and also that the power of the test is improved when p-values 

are computed with a Student t-distribution. 

 

[Insert Table 15 - 18 about here] 

 

First, we make a pairwise comparison between the first differenced model (based 

on the results in Table 5) and the fractional I(d) model 1, and we report, in Table 15, the 

RMSE and the MAPE values for h = 1, 6, 12, 18 and 24 in a 24-period horizon. We 

observe that model 1 outperforms the ARIMA one in all cases. Based on these values, we 
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computed, in Table 16, the M-DM statistic and, not surprisingly, model 1 results 

preferred in the five series. 

 

Tables 17 and 18 are similar to Tables 15 and 16 but comparing now the 

SARIMA specification (presented in Table 6) with the seasonal fractional model 2. 

Again we observe here that the fractional model produces lower values than the non-

fractional one in terms of both the RMSE and the MAPE, and the SFI model outperforms 

the seasonal ARIMAs in terms of the M-DM test in practically all cases. 

 

In what follows, we focus on the three selected models in the previous section 

(i.e., models 1, 2 and 3a). The results are now displayed in Tables 19 and 20 respectively 

for h = 12 and 24. We observe that for the 12-period ahead predictions, model (3a) 

outperforms the others in four out of the five series examined (all except series 3 where 

the statistics cannot distinguish between one model and another). Less conclusive results 

are obtained at the 24-period ahead forecasts though still model (3a) seems to be the 

preferable one. 

 

 Finally, note that according to these results based on model 3a (in Table 9), series 1 

and 2 seem to be the most persistent ones, while series 5 is the less persistent, implying 

that the degree of dependence decreases with the length of stay. 
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7. Discussions and Conclusions 

 

In this paper we have presented three model specifications to describe the time 

series dependence and other implicit dynamics in the Australian tourism arrivals.  Five 

univariate series are analysed. The models used are first, a long memory processes at the 

long run or zero frequency; second, a long memory one at the seasonal (monthly) 

frequencies; and third, a combination of the two structures using also long range 

dependence. We compared these models with other more conventional ones based on 

non-seasonal and seasonal unit roots. The results indicated first that the standard methods 

employed in the literature, based on stationary I(0) or non-stationary I(1) models are 

clearly rejected in favour of fractional degrees of integration. This applies to both non-

seasonal and seasonal ARIMA models. If we focus on the models with long range 

dependence at the zero frequency, the orders of integration range between 0.118 and 

0.307 depending on the series, and all of them present seasonal AR coefficients close to 

1. Using a seasonal long memory model, the differencing parameters are in the range 

(0.484, 0.747) while the AR model coefficients range between 0.208 and 0.422. Finally, 

employing a model that uses long memory at both the zero and the seasonal frequencies, 

the results also indicate fractional degrees of integration, with higher values at the 

seasonal components. This implies that seasonality is a serious matter in these series 

displaying a large degree of dependence. Moreover, this latter model led to the most 

accurate results in terms of forecasting. Comparing standard ARIMA and SARIMA 

models with those based on non-seasonal and seasonal fractional integration, the results 

strongly support the latter specifications in all cases. 
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These results mean that shocks affecting the seasonal structure of Australian 

tourism arrivals series (based on the estimates of ds in model 2, Table 8), will have a 

transitory effect though taking a very long time to disappear in the long run. On the other 

hand, shocks related to the long run evolution of the Australian tourism arrivals series 

also have a transitory nature though disappear faster than in the seasonal case (based on 

estimates of d in model 1, Table 4). However, taking into account the two structures 

(simultaneously throughout a long memory model at zero and the seasonal frequencies, 

i.e., d and ds in model 3, Table 12), the series are mean reverting though highly 

persistent, while the long term evolution is close to the unit root implying almost 

permanent effects of the shocks. Thus, it seems important for the authorities to 

distinguish the nature of the shock since the consequences are different (though highly 

persistent in the two cases): in case of a shock, related to the seasonal evolution of the 

series, short term and intensive policy measures (e.g. intensive marketing campaign, 

travel facilitation, etc..) must be adopted to recover the original level since in the event of 

a negative shock it will take long time to disappear. On the other hand, if the shock is 

related to the long term evolution of the series, long range intensive policies must be 

implemented since otherwise the series will tend to remain at a lower level. Some 

examples of long range policies that can be adopted include 1- the development of 

retention and career tourism employees, 2- the improvements of the industry’s 

information base, 3- the reinforcement Australia’s image as a safe and friendly 

destination 4- the development of efficient and competitive transportation networks. 

 

What are the appropriate conclusions suggested by the findings of this study? 

Firstly, it was clear that taking first differences (or seasonal first differences) in the 
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Australian arrivals series, under the assumption of a unit root (or seasonal unit roots), 

would lead to series that are over-differenced, and subsequently such procedure might 

result in incorrect policy implications. Secondly, persistence behaviour is in general 

mean reverting though the adjustment process takes a very long time to disappear in the 

future. Therefore, an active tourism policy is needed to enforce the series to adjust more 

rapidly. Thirdly and finally, relative to forecasting performance of the different models, 

the one based on long range dependence at zero and the seasonal frequencies (i.e., model 

(3a) outperforms the others, and therefore it should be adopted as reference for policy 

purpose. In other words, this signifies that Australian tourism arrivals are influenced by 

long memory processes simultaneously affecting at zero and the seasonal (monthly) 

frequencies, and the two effects have to be taken into account when policy acting on the 

series.  

 

How does this paper compare with alternative time series research in tourism?  

This paper adopts a fractional integration model (Chu, 2008; Gil-Alana, 2005), while the 

traditional unit root integrated models are common in tourism (Maloney and Montes 

Rojas, 2005; Bhattacharya and Narayan, 2005; Lim and McAleer, 2002). Gil-Alana 

(2005) employed a simple seasonal fractionally integrated model (i.e., model 2), while in 

this paper we have shown that a model incorporating fractional integration at both the 

zero and the seasonal frequencies outperforms those using fractional integration either at 

zero or the seasonal frequencies. Therefore, this paper is innovative in the present 

context. More research using other country applications is needed to confirm the present 

research.  
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Appendix: Robinson’s (1994) parametric approach for fractional integration 

 

Assuming that xt are the errors in a regression model with a linear time trend, 

,...,2,1, =++= txty tt βα   (A1)  

we suppose that xt adopt the form: 

       ,...,2,1,);( == tuxdL ttρ     (A2) 

where ρ is a scalar function that depends on L and the fractional differencing 

parameter(s) d, and that will adopt different forms as shown below, and ut is I(0). The 

function ρ is specified in such a way that all its roots should be on the unit circle in the 

complex plane, and therefore it includes polynomials of the form (1-L)d (as in model 1), 

(1-Ls)d (as in model 2), or even more generally, (1-L)d(1-Ls)ds (as in model 3). 

Robinson (1994) proposed a Lagrange Multiplier (LM) test of the null hypothesis: 

    ,: **
oo ddH = .     (A3) 

in (A1) and (A2), where d* is equal to d in model 1, ds in model 2, and a (2x1) vector (d, 

ds)T in model 3. Based on Ho given by (A3), the estimated T)ˆ,ˆ(ˆ βαγ = and residuals are: 
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with zt  = (1, t)T. The functional form of the test statistic is then given by: 
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where T is the sample size, and 



 23

�
�
�

�

�

�
�
�

�

�

� � �×
�
�

�

�

�
�

�

�
�×−=

= = =

−

=

*

1

*

1

*

1

1
*

1

2 )()(ˆ)'(ˆ)(ˆ)'(ˆ)()(
2ˆ

j j j
jj

j
jjjjjT

A λψλελελελελψλψ  

� �==−=
=

−

=

−−*

1

1

1

1221 );()ˆ;(
2

)ˆ(ˆ);()ˆ;()(
2ˆ

j

T

j
jjjjj Ig

T
Ig

T
a λτλπτσσλτλλψπ

 

,)(minargˆ;
2

);ˆ;(log)(ˆ 2
* τστπλτλ

τ
λε

τ Tjjj T
j

g
∈

==
∂
∂=  

and the sums over * in the above expressions are over λ ∈ M where M = {λ: -π < λ < π, 

λ ∉ (ρl - λ1, ρl + λ1), l = 1, 2, …, s} such that ρl, l = 1, 2, …, s < ∞ are the distinct poles 

of ψ(λ) on (-π, π]. Also, 
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and I(λj) is the periodogram of ut evaluated under the null. Note that in model 1, 
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while in model 3, �(λj) = [�1(λj), �2(λj)]T. 

The function g above is a known function coming from the spectral density of ut, 
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Note that these tests are purely parametric, and, therefore, they require specific modelling 

assumptions about the short memory specification of ut. Thus, if ut is a white noise, then 

g ≡ 1, (and thus, 0)(ˆ =jλε ), and if it is an AR process of the form φ(L)ut = εt, then, g = 

|φ(eiλ)|-2, with σ2 = V(εt), so that the AR coefficients are a function of τ. 

 Based on Ho (A3), Robinson (1994) showed that under certain very mild regularity 

conditions: 

            .,ˆ 2 ∞→→ TasR pd χ           

where p is the dimension of d*.  
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Table 1. Description of the time series 

Series 1 Number of movements: 2 weeks and under 1 month 

Series 2 Number of movements: 1 weeks and under 2 month 

Series 3 Number of movements: 2 weeks and under 3 month 

Series 4 Number of movements: 3 weeks and under 6 month 

Series 5 Number of movements: 6 weeks and under 12 month 
 All series are monthly running from January 1991 to January 2009. 
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  Table 2. Summary statistics  

 M SD Skew Kurtosis Jarque-Bera 

Series 1 80434 35447 1.386 2.102 78.53 

Series 2 48942 25998 1.878 4.605 154.32 

Series 3 17090 6830 0.521 -0.345 113.54 

Series 4 15418 5155 0.688 0.228 88.59 

Series 5 13144 3562 0.761 0.871 63.54 
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 Table 3. Estimates of d in model (1)  
Series No regressors An intercept A linear trend 

Series 1 0.261 
(0.233,   0.303) 

0.387 
(0.354,   0.426) 

0.127 
(0.076,   0.195) 

Series 2 0.182 
(0.152,   0.225) 

0.336 
(0.286,   0.397) 

0.118 
(0.038,   0.226) 

Series 3 0.227 
(0.136,   0.479) 

0.383 
(0.304,   0.485) 

0.307 
(0.191,   0.455) 

Series 4 0.504 
(0.165,   0.657) 

0.339 
(0.260,   0.449) 

0.283 
(0.158,   0.449) 

Series 5 0.631 
(0.525,   0.752) 

0.258 
(0.196,   0.343) 

0.195 
(0.104,   0.310) 

 The values in parenthesis refer to the 95% confidence band. 
 
 
 

 Table 4. Estimates of the parameters in model (1) with a linear time trend 
Series Intercept Time trend d Seas. AR(1)  

Series 1 33124.109 
(6.820) 

436.457 
(11.845) 

0.127 
(0.076,  0.195) 

0.939 

Series 2 26115.375 
(5.302) 

207.584 
(5.545) 

0.118 
(0.038,  0.226) 

0.974 

Series 3 12376.602 
(4.592) 

40.176 
(1.943) 

0.307 
(0.191,  0.455) 

0.941 

Series 4 11149.335 
(6.632) 

36.803 
(2.877) 

0.283 
(0.158,  0.449) 

0.903 

Series 5 10435.898  
(11.872) 

24.662  
(3.725) 

0.195 
(0.104,  0.310) 

0.929 

 In parenthesis in columns 2 and 3, t-values. In bold the significant coefficients. 
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Table 5: Estimates of SARMA components in the undifferenced and differenced 
data  

d = 0 (undifferenced data) d = 1 (differenced data) Series 
Model Parameters Model Parameters 

Series 1 SARMA (1, 0) AR1 = 0.973 SARMA (1, 0) AR1 = 0.962 

Series 2 SARMA (1, 1) AR1 = 0.975 SARMA (1, 1) AR1 = 0.978 

Series 3 SARMA (1, 0) AR1 = 0.942 SARMA (1, 0) AR1 = 0.916 

Series 4 SARMA (1, 1) AR1 = 0.925 SARMA (1, 0) AR1 = 0.858 

Series 5 SARMA (1, 0) AR1 = 0.943 SARMA (1, 0) AR1 = 0.914 

 
 
 
Table 6: Estimates in the seasonal differenced data  

Series Model Parameter estimates 

Series 1 ARMA (1, 0) AR1 = 0.456 

Series 2 ARMA (1, 0) AR1 = 0.462; 

Series 3 ARMA (1, 0) AR1 = 0.224;  MA1 = 0.117 

Series 4 ARMA (1, 1) AR1 = 0.210;  MA1 = 0.119 

Series 5 ARMA (1, 1) AR1 = 0.163;  MA1 = 0.121 
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Table 7. Estimates of d in model (2) 

 Series No regressors An intercept A linear trend 

Series 1 0.736 
(0.690,   0.787) 

0.693 
(0.638,   0.754) 

0.723 
(0.676,   0.775) 

Series 2 0.753 
(0.719,   0.790) 

0.767 
(0.731,   0.805) 

0.747 
(0.712,   0.786) 

Series 3 0.602 
(0.565,   0.645) 

0.602 
(0.563,   0.645) 

0.597 
(0.560,   0.638) 

Series 4 0.492 
(0.456,   0.534) 

0.485 
(0.446,   0.529) 

0.484 
(0.448,   0.523) 

Series 5 0.511 
(0.475,   0.553) 

0.607 
(0.566,   0.653) 

0.563 
(0.526,   0.604) 

The values in parenthesis refer to the 95% confidence band. 
 
 
 

 Table 8. Estimates of the parameters in model (2) with a linear time trend 
Series Intercept Time trend ds AR(1) coeff. 

Series 1 10720.077 
(10.291) 

537.973 
(15.109) 

0.723 
(0.676,   0.775) 

0.422 

Series 2 22698.439 
(3.528) 

236.236 
(9.027) 

0.747 
(0.712,   0.786) 

0.367 

Series 3  13505.138 
(9.470) 

39.566 
(5.323) 

0.597 
(0.560,   0.638) 

0.310 

Series 4 11552.676 
(13.035) 

36.867 
(7.161) 

0.484 
(0.448,   0.523) 

0.350 

Series 5 10059.126  
(15.208) 

24.320    
(6.799) 

0.563 
(0.526,   0.604) 

0.208 

 In parenthesis in columns 2 and 3, t-values. In bold the significant coefficients. 
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Table 9. Estimates of d and ds in model (3a) (with white noise disturbances) 

 No regressors An intercept A linear time trend 

 d ds d ds d ds 

Series 1 0.34 0.65 0.32 0.66 0.32 0.66 

Series 2 0.37 0.75 0.30 0.74 0.30 0.75 

Series 3 0.26 0.60 0.29 0.60 0.29 0.60 

Series 4 0.30 0.51 0.31 0.50 0.29 0.50 

Series 5 0.24 0.55 0.21 0.58 0.21 0.56 
 Though not reported, the I(0) and the I(1) hypotheses were rejected in all cases at the 95% 

level. 
 
 

Table 10. Estimates of d and ds in model (3b) (with non-seasonal AR(1) disturbances) 
 No regressors An intercept A linear time trend 

 d ds d ds d ds 

Series 1 --- --- 0.41 0.64 0.41 0.64 

Series 2 --- --- 0.34 0.74 0.34 0.74 

Series 3 --- --- 0.29 0.60 0.29 0.60 

Series 4 --- --- 0.25 0.49 0.11* 0.48 

Series 5 --- --- 0.25 0.57 0.31 0.55 
--- means that the estimates do not converge. * means that the I(0) hypothesis was not 
rejected at 5% level. 
 
 

Table 11. Estimates of d and ds in model (3c) (with seasonal AR(1) disturbances) 
 No regressors An intercept A linear time trend 

 d ds d ds d 

 
ds 

Series 1 0.50 0.92** 0.29 -0.38 0.35 0.86 

Series 2 0.65 1.00** 0.18 -0.24 0.34 0.86 

Series 3 0.26 0.69 0.28 0.65 0.28 0.64 

Series 4 0.29 0.60 0.30 0.59 0.28 0.59 

Series 5 0.22 0.67 0.23 -0.41 0.13 -0.41 
 **: The I(1) hypothesis (ds = 1) cannot be rejected at the 5% level. 
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Table 12. Estimates of the parameters in model (3a)  

Series Intercept Time trend d ds 

Series 1 73721.210 
(2.603) 

455.211 
(3.524) 

0.32 0.66 

Series 2 71100.140 
(4.237) 

262.129 
(2.469) 

0.30 0.75 

Series 3 44731.316 
(5.241) --- 0.28 0.59 

Series 4 20431.910 
(3.455) --- 0.31 0.50 

Series 5 6266.955 
(1.839) 

31.904  
(2.577) 

0.21 0.56 

 In parenthesis in columns 2 and 3, t-values. In bold the significant coefficients. 
 
 

Table 13. Estimates of the parameters in model (3b)  
Series Intercept Time trend d ds AR coeff. 

Series 1 75856.828 
(3.204) 

497.880 
(2.513) 

0.41 0.64 -0.217 

Series 2 70607.843 
(4.558) 

284.359 
(2.196) 

0.34 0.74 -0.075 

Series 3 44731.316 
(5.241) --- 0.29 0.60 0.0009 

Series 4 11844.199 
(5.556) 

35.961  
(3.821) 

0.11 0.48 0.236 

Series 5 -1927.364 
(-0.388) 

40.786  
(2.523) 

0.31 0.55 -0.133 

 In parenthesis in columns 2 and 3, t-values. In bold the significant coefficients. 
 
 

Table 14. Estimates of the parameters in model (3c)  
Series Intercept Time trend d ds AR coeff. 

Series 1 61277.996 
(4.042) 

544.601 
(2.135) 

0.35 0.86 -0.137 

Series 2 53840.609 
(4.904) 

325.351 
(1.886) 

0.34 0.86 -0.127 

Series 3 43297.722 
(5.022) 

--- 0.28 0.65 -0.107 

Series 4 17873.589 
(2.483) --- 0.30 0.59 -0.091 

Series 5 108055483 
(20.731) 

22.6651 
(4.985) 

0.13 -0.44 0.992  

 In parenthesis in columns 2 and 3, t-values. In bold the significant coefficients. 
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Table 15: Forecasting accuracy in terms of RMSE and MAPE 

RMSE MAPE Series 1 
ARIMA Model 1 ARIMA Model 1 

1 1.1543 0.9609 0.4455 0.2880 
6 2.2209 1.7386 0.8909 0.3227 
12 2.6785 2.3755 0.9012 0.3956 
18 3.9092 3.2589 1.1101 0.4555 
24 7.8123 5.1813 1.5677 0.5670 

RMSE MAPE Series 2 
ARIMA Model 1 ARIMA Model 1 

1 0.4095 0.2735 0.4321 0.1896 
6 1.3345 1.1761 0.6776 0.3367 
12 3.4541 2.0670 0.7089 0.3982 
18 2.9081 1.8140 0.7091 0.3867 
24 3.1159 2.0610 0.7345 0.4632 

RMSE MAPE Series 3 
ARIMA Model 1 ARIMA Model 1 

1 0.5567 0.2627 0.6787 0.3409 
6 1.1903 0.6594 0.8732 0.5280 
12 2.1184 1.0856 0.9044 0.5849 
18 1.9043 1.0446 0.8876 0.5787 
24 1.9944 1.1144 0.9182 0.6426 

RMSE MAPE Series 4 
ARIMA Model 1 ARIMA Model 1 

1 1.1143 0.9469 0.7765 0.5590 
6 0.6654 0.4952 0..7098 0..4411 
12 0.7833 0.5386 0.7765 0.4774 
18 0.6765 0.4744 0.6592 0.4223 
24 0.9083 0.6824 0.7812 0.5450 

RMSE MAPE Series 5 
ARIMA Model 1 ARIMA Model 1 

1 0.3456 0.0312 0.4432 0.1325 
6 0.5430 0.3387 0.7893 0.4627 
12 0.6756 0.4491 0.8092 0.5322 
18 0.5987 0.5120 0.8443 0.5870 
24 0.6430 0.5790 0.6574 0.1217 
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Table 16. Pairwise comparisons between ARIMA and FI models using M-DM statistic 

Series h = 12 h = 24 

Series 1 3.411 (FI) 2.889 (FI) 

Series 2 3.567 (FI) 3.421 (FI) 

Series 3 3.112 (FI) 2.557 (FI) 

Series 4 3.409 (FI) 2.905 (FI) 

Series 5 3.356 (FI) 2.009 (FI) 

 In parenthesis the selected model 
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Table 17: Forecasting accuracy in terms of RMSE and MAPE 

RMSE MAPE Series 1 
SARIMA Model 2 SARIMA Model 2 

1 0.5517 0.4617 0.2987 0.1996 
6 0.8893 0.7930 0.3455 0.2211 
12 0.8973 0.7341 0.4094 0.2069 
18 0.9567 0.9112 0.4241 0.2247 
24 2.0098 1.0999 0.5376 0.2373 

RMSE MAPE Series 2 
SARIMA Model 2 SARIMA Model 2 

1 0.5504 0.3607 0.3421 0.2177 
6 0.8334 0.5647 0.4355 0.2295 
12 0.9075 0.7326 0.3611 0.2605 
18 1.0943 0.7206 0.5876 0.2616 
24 1.1183 0.7854 0.6788 0.2711 

RMSE MAPE Series 3 
SARIMA Model 2 SARIMA Model 2 

1 0.5477 0.3388 0.4456 0.3871 
6 0.3654 0.1635 0.3091 0.2253 
12 0.1613 0.1694 0.2017 0.2290 
18 0.1509 0.1755 0.2115 0.2376 
24 0.2033 0.2076 0.2334 0.2477 

RMSE MAPE Series 4 
SARIMA Model 2 SARIMA Model 2 

1 0.3341 0.1418 0.4366 0.2164 
6 0.2290 0.1381 0.7572 0.2502 
12 0.4432 0.1407 0.5364 0.2348 
18 0.5327 0.1381 0.6788 0.2415 
24 0.6675 0.1453 0.7566 0.2563 

RMSE MAPE Series 5 
SARIMA Model 2 SARIMA Model 2 

1 0.1132 0.0532 0.3765 0.1729 
6 0.2432 0.0920 0.4378 0.2447 
12 0.3315 0.0931 0.5366 0.2326 
18 0.4453 0.1177 0.6789 0.2698 
24 0.3654 0.1404 0.7623 0.2912 
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Table 18. Pairwise comparisons between SARIMA and SFI models using M-DM 

statistic 
Series h = 12 h = 24 

Series 1 2.314 (SFI) 1.914 (SFI) 

Series 2 2.817 (SFI) 2.011 (SFI) 

Series 3 2.019 (SFI) 1.657 

Series 4 2.303 (SFI) 1.808 (SFI) 

Series 5 2.343 (SFI) 1.819 (SFI) 

 In parenthesis the selected model 
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 Table 19. Pairwise comparison using the modified DM statistic (h =12) 

Series 1  Series 2 

 Mod.1 Mod.2 Mod.3a   Mod.1 Mod.2 Mod.3a 

Mod.1 XXXX XXXX XXXX  Mod.1 XXXX XXXX XXXX 
Mod.2 3.456 

(2) 
XXXX XXXX  Mod.2 3.117 

(2) 
XXXX XXXX 

Mod.3a 4.567 
(3) 

3.567 
(3) 

XXXX  Mod.3a 4.002 
(3) 

3.055 
(3) 

XXXX 
Series 3  Series 4 

 Mod.1 Mod.2 Mod.3a   Mod.1 Mod.2 Mod.3a 

Mod.1 XXXX XXXX XXXX  Mod.1 XXXX XXXX XXXX 
Mod.2 2.143(2) XXXX XXXX  Mod.2 2.345 

(2) 
XXXX XXXX 

Mod.3a 1.654 1.456 XXXX  Mod.3a 2.113 
(3) 

1.998 
(3) 

XXXX 
Series 5 

 Mod.1 Mod.2 Mod.3a 

Mod.1 XXXX XXXX XXXX 
Mod.2 2.134 

(2) 
XXXX XXXX 

Mod.3a 2.007 
(3) 

1.903 
(3) 

XXXX 
The critical value at the 5% level is1,796 
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Table 20. Pairwise comparison using the modified DM statistic (h =24) 

Series 1  Series 2 

 Mod.1 Mod.2 Mod.3a   Mod.1 Mod.2 Mod.3a 

Mod.1 XXXX XXXX XXXX  Mod.1 XXXX XXXX XXXX 
Mod.2 1.443 

(2) 
XXXX XXXX  Mod.2 2.019 

(2) 
XXXX XXXX 

Mod.3a 1.456 
(3) 

2.009 
(3) 

XXXX  Mod.3a 2.399 
(3) 

2.133 
(3) 

XXXX 
Series 3  Series 4 

 Mod.1 Mod.2 Mod.3a   Mod.1 Mod.2 Mod.3a 

Mod.1 XXXX XXXX XXXX  Mod.1 XXXX XXXX XXXX 
Mod.2 1.654 XXXX XXXX  Mod.2 1.992 

(2) 
XXXX XXXX 

Mod.3a 1.034 0.997 XXXX  Mod.3a 1.811 
(3) 

1.556 XXXX 
Series 5 

 Mod.1 Mod.2 Mod.3a 

Mod.1 XXXX XXXX XXXX 
Mod.2 1.895 

(2) 
XXXX XXXX 

Mod.3a 1.546 1.238 XXXX 
The critical value at the 5% level is1,711. 
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     Figure 1. International tourist arrivals to Australia. 
 
 
 

 
 

   Source: Adopted from the Jackson Report (http://www.ret.gov.au), based on data from  
the Australian Bureau of Statistics (ABS Cat. No. 3401.0).   
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Figure 2.  Time series plots 
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Figure 3.  First seasonal differenced time series plots 
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Figure 4.  Impulse response functions based on the results in model (1) 
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The thin lines refer to the 95% confidence bands. 
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Figure 5. Impulse response functions based on the results in model (2) 
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The thin lines refer to the 95% confidence bands. 
 


