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1.  Introduction 

The examination of the stationarity properties of energy consumption is important on 

several fronts.  First, if energy consumption is stationary in levels, shocks to energy 

consumption will have only transitory effects.  On the other hand, if energy consumption 

has a unit root, requiring first-differencing to render stationarity, shocks to energy 

consumption will have permanent effects.  Second, the distinction between the transitory or 

permanent nature of shocks has implications for the transmission of shocks from energy 

consumption to other sectors of the economy.  Indeed, if shocks to energy consumption are 

persistent such shocks may be transmitted to other sectors of the economy.    

       With the exception of the study by Lean and Smyth (2009), previous research by Chen 

and Lee (2007), Narayan and Smyth (2007), Hsu et al. (2008), and Mishra et al. (2009) has 

focused on the stationarity of aggregate energy consumption across panels of countries 

using standard unit root procedures.1   This short communication parallels the recent work 

by Lean and Smyth (2009) which dealt with the long memory processes for U.S. petroleum 

consumption by sector.  Specifically, this study emphasizes the long memory properties in 

the consumption of various energy sources by the U.S. electric power sector:  coal, natural 

gas, petroleum, hydroelectric, nuclear, total fossil fuel, total renewable energy, and total 

primary energy. In particular, we use fractional integration methodologies that permit us to 

study the standard cases of stationarity (d = 0) and unit roots (d = 1) as particular cases of 

interest. Moreover, allowing the order of integration to be a real value we allow for a richer 

degree of flexibility in the dynamic specification of the series, and, depending on the value 

of d we can determine if the series is I(0) stationary (d = 0); stationary with long memory 

(0 < d < 0.5); nonstationary but mean reverting (0.5 �  d < 1); or nonstationary and non-

mean-reverting (d �  1).    
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       According to the Energy Information Administration, in 2008 the U.S. electric power 

sector primary energy consumption totaled 40,090 trillion Btu of which fossil fuels 

comprised roughly 69.4%, nuclear 21.1%, and renewable 9.2%. Given the importance of 

the electric power sector in the generation of primary energy for use by other sectors of the 

economy, it is crucial to understand the impact of shocks related to the use of energy 

sources by this sector. Moreover, the prevailing concerns over fossil fuel usage and the 

environmental consequences, the proposed cap and trade legislation, and the increased 

interest in alternative energy sources may very well change the future energy consumption 

patterns of the U.S. electric power sector.   

        To this end, this short communication will determine whether various energy 

consumption measures by the U.S. electric power sector exhibit long memory behavior.   

Section 2 describes the data and methodology along with the results.  Section 3 provides 

concluding remarks 

 

2.  Data, Methodology, and Results  

       Monthly data from January 1973 to May 2009 on energy consumption by the U.S. 

electric power sector by source denoted in trillion Btu was obtained from the Energy 

Information Administration:  coal, natural gas, petroleum, hydroelectric, nuclear, total 

fossil fuel, total renewable energy, and total primary energy.  All data have been converted 

into natural logarithms.2    

       Two well-known characteristics of the data examined in this study are the degree of 

dependence across time and the seasonality.  Based on these features two plausible 

specifications that have been widely employed in univariate contexts in the time series 

literature are the unit root model with seasonal short run dynamics, and the alternative of a 
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seasonal unit root model with non-seasonal AR(MA) components. Thus, for example, if we 

believe that a series is nonstationary with respect to the long run component, first 

differences may be adopted, and we can consider a process of the form: 

...,2,1,)(;)1(;' ===−+= tuLuxLxzy tt
s

sttttt εφβ  (1) 

where yt is the time series we observe; � is a (kx1) vector of unknown coefficients; zt is a 

(kx1) vector of deterministic terms that may include, for example, an intercept, a linear 

trend or seasonal dummy variables; and )( s
s Lφ  is a seasonal AR polynomial describing the 

short run seasonal dynamics of the series. On the other hand, if we believe that the 

nonstationarity eminates from the seasonal structure, we can suppose that the series 

displays seasonal unit roots, and seasonal first differences should be adopted in this case. 

We can consider then a model of the form: 

...,2,1,)(;)1(;' ===−+= tuLuxLxzy tttt
s

ttt εφβ  (2) 

where s is equal to 12 for monthly data. Unit root models of the form of (1) have become 

standard practice in applied time series econometrics.  Also, the seasonal unit root model of 

the form of (2) has become a standard practice as well.  However, a limitation of the above 

approaches is the emphasis on integer degrees of differentiation, being 0 in case of 

stationarity and 1 with nonstationary models. It is well known that standard procedures to 

test these models have extremely low power if the true data generating process is 

fractionally integrated with an order of integration close to, but smaller than 1 (see Diebold 

and Rudebusch, 1991; Hassel and Wolters, 1994; Lee and Schmidt, 1996). 

 In this study, we extend models (1) and (2) to the fractional case and thus, consider 

processes of the form: 

...,2,1,)(;)1(;' ===−+= tuLuxLxzy tt
s

stt
d

ttt εφβ  (3) 
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and 

...,2,1,)(;)1(;' ===−+= tuLuxLxzy tttt
ds

ttt
s εφβ  (4) 

where d and ds may be non-integer values. Note that in (3) the process displays long 

memory with respect to the long run or zero frequency as long as d > 0, while the 

seasonality is described through a stationary AR model. On the contrary, in model (4) 

seasonality is long memory if ds > 0 and the short run dynamics are described through a 

non-seasonal AR process. Also, in equation (3), if d = 0, we have a seasonal AR process, 

while, if d = 1, a model with a unit root; in (4), ds = 0 produces a non-seasonal AR, while ds 

= 1 is a seasonal unit root model. 

The methodology employed in this paper is based on the Whittle function in the 

frequency domain (Dahlhaus, 1989) along with a testing procedure developed by Robinson 

(1994) that permits us to test models (3) and (4). The latter method tests the null 

hypothesis: 

)()(: sooso dorddordH =     (5) 

in (3) (or (4)) for any real value do (or dso). It has the advantage that it does not require 

preliminary differencing to render the series stationary since it is valid for any real value d 

(or ds), encompassing both the stationary (d, ds < 0.5) and nonstationary (d, ds � 0.5) 

hypotheses. Moreover, this approach does not require Gaussianity with a moment condition 

only of order two required, and is robust against conditional heteroscedastic errors.  

        We begin by performing standard non-seasonal and seasonal unit root tests on the 

disaggregated energy consumption measures. For the non-seasonal case, we employed the 

ADF test (Dickey and Fuller, 1979) along with the tests of Phillips and Perron (1988) and 

Ng and Perron (2001).  For the seasonal case, given the monthly nature of the data, we use 
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both the Beaulieu and Miron (1993) and Dickey et al. (1984) procedures. Though we do 

not report the results based on these methods, evidence of nonstationarity was found in the 

majority of the cases (i.e. unable to reject the unit root and seasonal unit root models at 

standard significance levels). However, the inability to reject the presence of a unit root 

may be due to the low power of these procedures, if indeed, the data are (seasonally or non-

seasonally) fractionally integrated. Thus, we implement the procedures described by 

equations (3) and (4). 

Table 1: Estimates of d and 95% Confidence Intervals based on model (6) 
d - estimates No regressors An intercept A linear time trend 

Coal [0.615 (0.693) 0.779] [0.576 (0.631) 0.711] [0.519 (0.602) 0.700] 

Hydroelectric [0.834 (0.914) 1.010] [0.712 (0.803) 0.914] [0.712 (0.803) 0.914] 

Natural gas [0.616 (0.713) 0.828] [0.444 (0.545) 0.688] [0.454 (0.560) 0.696] 

Nuclear [0.566 (0.655) 0.766] [0.627 (0.688) 0.778] [0.588 (0.672) 0.775] 

Petroleum [0.661 (0.727) 0.811] [0.520 (0.582) 0.676] [0.509 (0.584) 0.683] 

Total fossil fuel [0.654 (0.728) 0.813] [0.473 (0.533) 0.619] [0.415 (0.503) 0.610] 

Total primary  [0.695 (0.767) 0.850] [0.512 (0.557) 0.622] [0.403 (0.489) 0.593] 

Total renewable 
consumed 

[0.830 (0.907) 0.998] [0.722 (0.808) 0.912] [0.722 (0.808) 0.912] 
       Notes:  In bold the cases where the unit root cannot be rejected at the 5% level. 

 

Table 1 displays the estimates of d in model (3) under the assumption that the error 

term ut follows a seasonal AR(1) process.3 Therefore, the model considered is  

..,2,1,;)1(;' 12 =+==−+= − tuuuxLxzy ttsttt
d

ttt ερβ    

(6) 

Across all the energy consumption measures, we consider three standard cases: (1) no 

regressors (i.e. zt = 0 in (6)); (2) an intercept (zt � 1); and (3) an intercept with a linear time 

trend (zt = (1, t)’).   From Table 1 most of the estimates of d (reported in parenthesis within 

the brackets) are in the interval (0, 1), thus rejecting both the I(0)-trend stationary 
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representation and the unit root model. However, we fail to reject a unit root for 

hydroelectric in the case of no regressors.  For the remaining series the unit root is always 

rejected in favor of smaller degrees of integration.    

Table 2 focuses on the selected model for each energy source according to the 

deterministic terms. We observe that for hydroelectric and total renewable energy the time 

trend is not required,4 and the highest values for d are obtained for hydroelectric (d = 

0.803) and total renewable energy (d = 0.808), followed by nuclear (d = 0.672) and coal (d 

= 0.602). Note that the confidence intervals reported do not include a unit root for any 

energy source within the electric power sector. Furthermore, none of the energy sources 

yield estimates of d strictly below 0.5 (i.e. stationary region).  In addition, the seasonal AR 

coefficient estimates are generally large, indicating a strong influence of this component as 

well. 

Table 2:  Estimates of the Parameters based on Selected Models in Table 1 
d - estimates Intercept Time trend d (95% band) AR coeff. 

Coal 736.00 (8.50) 2.255  (3.88) [0.519 (0.602) 0.700] 0.890 

Hydroelectric 263.69  (10.23) ----- [0.712 (0.803) 0.914] 0.681 

Natural gas 247.33  (4.38) 0.611  (1.86) [0.454 (0.560) 0.696] 0.866 

Nuclear 72.686  (2.00) 1.506  (4.71) [0.588 (0.672) 0.775] 0.846 

Petroleum 309.38  (13.25) -0.635  (-4.32) [0.509 (0.584) 0.683] 0.508 

Total fossil fuel 1281.2 (10.57) 2.338  (3.86) [0.415 (0.503) 0.610] 0.878 

Total primary 
consumed 

1625.0 (11.50) 4.055  (5.92) [0.403 (0.489) 0.593] 0.920 

Total renewable 
consumed 

267.97  (9.97) ----- [0.722 (0.808) 0.912] 0.694 
 

Next, we allow for seasonality to display long memory and consider model (4) with 

non-seasonal AR(1) ut, i.e., 

..,2,1,;)1(;' 1 =+==−+= − tuuuxLxzy ttttt
d

ttt
s ερβ    

(7) 
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Table 3 displays the estimates of ds for each energy source. We first note that all values are 

in the range (0, 1) rejecting the seasonal unit root model. Evidence of stationary seasonality 

(ds < 0.5) is obtained for hydroelectric, petroleum, and total renewable energy. 

 

 

Table 3: Estimates of ds and 95% Confidence Intervals based on Model (7) 
ds - estimates No regressors An intercept A linear time trend 

Coal [0.511 (0.535) 
0.563] 

[0.537 (0.563) 
0.595] 

[0.551 (0.575) 
0.602] Hydroelectric [0.291 (0.317) 

0.346] 
[0.295 (0.319) 

0.347] 
[0.294 (0.318) 

0.346] Natural gas [0.445 (0.475) 
0.509] 

[0.419 (0.450) 
0.486] 

[0.444 (0.473) 
0.505] Nuclear [0.532 (0.555) 

0.581] 
[0.483 (0.514) 

0.549] 
[0.539 (0.563) 

0.589] Petroleum [0.259 (0.284) 
0.312] 

[0.269 (0.295) 
0.324] 

[0.278 (0.303) 
0.334] Total fossil fuel [0.481 (0.504) 

0.529] 
[0.496 (0.523) 

0.555] 
[0.492 (0.513) 

0.537] Total primary 
consumed 

[0.545 (0.567) 
0.593] 

[0.552 (0.579) 
0.612] 

[0.567 (0.588) 
0.612] Total renewable 

consumed 
[0.303 (0.330) 

0.359] 
[0.303 (0.329) 

0.359] 
[0.303 (0.329) 

0.359]  

         Table 4 focuses on the parameters of the selected models according to the 

specification given by (7). We observe that the estimates of ds range between 0.303 for 

petroleum and 0.588 for total primary energy. We also notice that the AR coefficient 

estimates are smaller in the cases of coal, natural gas, nuclear, total fossil fuel, and total 

primary energy than those reported in Table 2, but larger for hydroelectric, petroleum, and 

total renewable.   

 
  Table 4:  Estimates of the Parameters based on Selected Models in Table 3 

ds - estimates Intercept Time trend ds (95% band) AR coeff. 

Coal 763.92  (26.16) 2.356  (26.61) [0.551 (0.575) 0.602] 0.668 

Hydroelectric 258.71  (35.24) -0.082  (-3.29) [0.294 (0.318) 0.346] 0.841 

Natural gas 167.76  (10.22) 0.804  (15.25) [0.444 (0.473) 0.505] 0.676 

Nuclear 157.57  (10.62) 1.390  (30.65) [0.539 (0.563) 0.589] 0.787 
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Petroleum 258.85  (28.21) -0.533 (-16.84) [0.278 (0.303) 0.334] 0.812 

Total fossil fuel 1193.2  (32.56) 2.652  (22.97) [0.492 (0.513) 0.537] 0.537 

Total primary 
consumed 

1603.5  (34.56) 4.180  (29.99) [0.567 (0.588) 0.612] 0.527 

Total renewable 
consumed 

248.80  (31.10) 0.160  (5.85) [0.303 (0.329) 0.359] 0.849 
 

So far we have two time series models for each energy source, one based on a long 

memory model with seasonal AR disturbances, and the other one using a seasonal long 

memory model with non-seasonal AR(1) errors. Note that a high degree of persistence and 

seasonality is common between the two cases. Figure 1 displays the first 120 impulse 

responses based on the two models for each energy source.  

 
Figure 1: Impulse Responses for the Two Selected Models for Each Series 
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The thick line refers to the responses based on the model given by equation (6). The thin 

line refers to equation (7). 

 

We observe that seasonality is a serious matter in all cases, and higher responses 

take place in all cases under the first specification, which is the one based on a non-

seasonal I(d) process with seasonal AR(1) disturbances.  Finally, we performed an in-

sample forecasting experiment comparing the two models for each energy source using the 

last 60 observations via the modified Diebold and Mariano (1995) statistic as suggested by 

Harvey et al. (1997).  The results, however, were unable to differentiate between the 

models in terms of performance at standard significance levels. 

 

3.   Concluding Remarks 

 

        In light of the importance of the U.S. electric power sector in the generation of 

primary energy for use by other sectors of the economy, it is crucial to understand the 

impact of shocks related to the use of energy sources by this sector.   Indeed, the growing 
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environmental concerns over the consumption of fossil fuels in the generation of electricity 

and increased attention to renewable energy sources suggests that the energy consumption 

mix of the U.S. electric power sector may very well change.   The impact of energy 

conservation and demand management policies (defined as a shock) on the various energy 

sources used by the electric power sector will depend in part on the response of these 

energy sources to such policy shocks.    Thus, this short communication uses fractional 

integration to determine the level of persistence of the shocks affecting each energy source.   

The results indicate that each energy source consumed by the U.S. electric power sector is 

highly persistent, displaying long memory along with autoregressive behavior and strong 

seasonal patterns.   The persistence associated with each energy sources suggests that 

shocks originating from the electric power sector may be transmitted to other sectors of the 

economy as well. 

From certain perspectives, it might be argued our empirical work simplistic, as we 

do not take into account possible alternative features of our data. In particular, we did not 

check for the possibility of structural breaks or non-linearities in our time series. 

Admittedly, these are relevant issues, whose linkages with fractional integration are 

currently being investigated. Thus, in the context of breaks, methods such as those 

proposed by Gil-Alana (2008) and Ohanissian et al. (2008) could be implemented in these 

data to check if the conditions about persistence change. Non-linear fractionally integrated 

models (Caporale and Gil-Alana, 2007) on electric power data will be examined in future 

papers. 
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Endnotes 

 
1. There is an enormous energy consumption-growth literature in which the unit root 

behavior of energy consumption is examined in the determination of the appropriate 
methodology for Granger-causality testing (see Payne, 2010a,b; Ozturk, 2010 for 
surveys of this literature). 

 
2. The data are not seasonally adjusted. 
 
3. Higher AR order lead essentially to the same results. 
 
4. This is based on the t-values on the deterministic terms. 
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