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1. Introduction 

The Efficient Market Hypothesis (EMH) in its weak form rules out the possibility of 

abnormal systematic profits over and above transaction costs and risk premia, as prices 

should fully reflect available information (see Fama, 1970). The implication is that stock 

prices should follow a random walk process, which implies unpredictable returns (see 

Summers, 1986). Therefore, a finding of mean reversion in stock prices is seen as 

inconsistent with equilibrium asset pricing models (see, e.g., Poterba and Summers, 1988 

and Fama and French, 1988). A large number of studies have been carried out to 

establish whether prices are indeed I(1) and, consequently, stock market returns I(0) 

series, although business cycle variation and short-range dependence might also lead to a 

rejection of long memory in stock prices (see Lo, 1991). However, as we argued in 

Caporale and Gil-Alana (2002), the assumptions imposed by standard unit root tests 

might be too restrictive, and the possibility of fractional orders of integration with a slow 

rate of decay should be considered. Therefore that study performed tests allowing for 

fractional alternatives that incorporates the I(0) and the I(1) models as particular cases of 

interest, and found that US real stock returns are close to being I(0) (note that if shocks 

are weakly autocorrelated, markets will not  be efficient). Fractional integration models 

(at the long run or zero frequency) have also been used for inflation and interest rates 

(see, e.g., Shea, 1991; Backus and Zhin, 1993; Hassler and Wolters, 1995; Baillie et al., 

1996, etc.).  

A subsequent contribution (see Caporale and Gil-Alana, 2007) decomposed the 

stochastic process followed by US stock prices into a long-run component described by 

the fractional differencing parameter (d) and a short-run (ARMA) structure. Finally, in  

Caporale and Gil-Alana (2008) we introduced a more general model which, instead of 
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considering exclusively the component affecting the long-run or zero frequency, also 

takes into account the cyclical structure. Specifically, a procedure was applied which 

allows to test simultaneously for unit roots with possibly fractional orders of integration 

at both the zero and the cyclical frequencies. Modelling simultaneously the zero and the 

cyclical frequencies can solve at least to some extent the problem of misspecification that 

might arise with respect to these two frequencies.  

However, the fractional differencing parameter may be very sensitive to the data 

frequency. In fact, it has often been claimed that aggregation is behind fractional 

integration: Robinson (1978) and Granger (1980) showed that the aggregation of 

heterogeneous individual AR process may produce fractional integration. In a more 

recent paper, Souza (2005) gives a formula for the spectral density of the aggregated 

process and shows that long memory is very likely under aggregation. On the other hand, 

it is well known that temporal aggregation leads to finite sample biases in the estimates 

of the fractional differencing parameter (see, e.g. Souza and Smith, 2002). This is the 

issue that will be investigated in the present study by using high frequency data on the 

British pound-US dollar spot exchange rate collected every 1, 2, 3, 5, and 10 minutes. As 

in Caporale and Gil-Alana (2008), we start the analysis using a long memory model for 

both the zero and cyclical frequencies; however, since the evidence  clearly suggested 

orders of integration close to zero for the cyclical frequencies, we then focus exclusively 

on the long run or zero frequency. Excellent surveys on the use of high frequency 

financial data in econometrics are among others the papers of Campbell, Lo and 

MacKinlay (1997), Goodhart and O`Hara (1997), Wood (2000), Andersen (2000), 

Ghysels (2000), Bawens and Giot (2001), Gourieroux and Jasiak (2001), Lyons (2001), 

Dacarogna et al. (2001), Tsay (2001) and Engle and Russel (2004). 
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Fractional integration in exchange rates markets has been examined in a number 

of papers. A large number of papers deal with the theory of Purchasing Power Parity 

(PPP), which occupies a central place in international economics. In fact, it is a key 

building block in monetary models of exchange rate determination. In a flexible-price 

monetary model, PPP is assumed to hold continuously. In a sticky-price model, PPP does 

not hold, but is a maintained assumption for the long run. The question of interest is then 

to determine if deviations from PPP are transitory or permanent. Applying R/S 

techniques to daily rates for the British pound, French franc and Deutsche mark, Booth, 

Kaen and Koveos (1982) found positive memory during the flexible exchange rate period 

(1973-1979) but negative one (i.e., anti-persistence) during the fixed exchange rate 

period (1965-1971). Later, Cheung (1993) also found evidence of long memory 

behaviour in foreign exchange markets during the managed floating regime. On the other 

hand, Baum, Barkoulas and Caglayan (1999) estimated ARFIMA models for real 

exchange rates in the post-Bretton Woods era and found almost no evidence to support 

long run PPP. Additional papers on exchange rate dynamics using fractional integration 

are Fang, Lai and Lai (1994), Crato and Ray (2000) and Wang (2004).  

The layout of the paper is as follows. Section 2 describes the econometric 

methodology used. Section 3 provides details of the data and discusses the empirical 

results. Section 4 summarises the main findings and offers some concluding remarks. 

 

2. Methodology 

There are two definitions of long memory, one in the frequency domain and the other in 

the time domain. Let us consider a zero-mean covariance stationary process { tx , 
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,...1,0 ±=t } with autocovariance function )( uttu xxE +=γ . The time domain definition of 

long memory states that:  

∞=�
∞

−∞=u
uγ . 

Assuming that xt has an absolutely continuous spectral distribution, so that it has a 

spectral density function of the following type: 
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according to the frequency domain definition of long memory the spectral density 

function is unbounded at some frequency � in the interval [ π,0 ).  

Most of the existing empirical literature considers the case when the singularity or 

pole in the spectrum occurs at the zero frequency. This is the standard case of ( )dI  

models of the form: 

,...,1,0,)1( ±==− tuxL tt
d     (1) 

,0,0 ≤= txt  

with d > 0, where L  is the lag-operator ( 1−= tt xLx ) and tu  is ( )0I , being defined as a 

covariance stationary process with a spectral density function that is positive and finite at 

any frequency. This includes a wide range of model specifications such as the white 

noise, the stationary autoregression (AR), moving average (MA), stationary ARMA etc.1 

 The I(d) models of the form given by equation (1) were introduced by Granger 

(1980, 1981), Granger and Joyeux (1980) and Hosking (1981) and since then have been 

widely employed to describe the behaviour of many economic time series (see, e.g., 
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Diebold and Rudebusch, 1989; Sowell, 1992; Gil-Alana and Robinson, 1997; etc.). Note 

that the parameter d plays a crucial role in describing the degree of dependence of the 

series. Specifically, if d = 0 in (1), xt = ut, and the series is I(0), potentially including 

ARMA structures, with the autocorrelations decaying then exponentially rapid. If d 

belongs to the interval (0, 0.5), the series is still covariance stationary but the 

autocorrelations take longer to disappear than in the I(0) case. If d is in the interval [0.5, 

1), the series is no longer covariance stationary; however, it is still mean-reverting with 

shocks affecting it disappearing in the long run. Finally, if d �  1 the series is 

nonstationary and non-mean-reverting. 

u In this paper we analyse the long memory (fractional integration) property of high 

frequency financial data, noting that the fractional differencing parameter can change 

substantially depending on the data frequency employed. The methodology employed 

here to estimate the fractional differencing parameter is based on the Whittle function in 

the frequency domain (Dahlhaus, 1989). We also employ a testing procedure developed 

by Robinson (1994) allowing for any real value of d in I(d) models. The latter is a 

Lagrange Multiplier (LM) procedure which is the most efficient one in the context of 

fractional integration. It tests the null hypothesis Ho: d = do for any real value do in (1), 

and given the fact that the test statistic follows a standard (normal) limit distribution it is 

possible to construct confidence bands for the non-rejection values.2 

 

 

 

                                                                                                                                                                            
1 In fact, if ut in (1) is ARMA(p,q), yt is said to follow a fractionally integrated ARMA, ARFIMA(p, d, q) 
model. 
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3. Data and empirical results 

The data used for the analysis are taken from Reuters, and are intraday data for several 

days at the 1, 2, 3, 5, 10-minute frequency. Specifically, the series whose properties are 

being investigated is the nominal exchange rate of the British pound vis-à-vis the US 

dollar.  

[Insert Figures 1 – 4 about here] 

 Figure 1 shows plots of the four series, i.e., Open, High, Low and Last values of 

the exchange rate collected every minute, where High (Low) stands for the highest 

(lowest) price and Open (Last) for the initial (last) price observed in that time interval 

respectively. Their corresponding returns, obtained as the first differences of the log-

prices, are shown in Figure 2. Figures 3 and 4 display the correlograms and the 

periodograms of the return series. The values of the former seem to indicate that the 

original series may be I(1), suggesting the possibility of random walk behaviour; 

however, the presence of some significant values even at lags far away from zero might 

indicate weak autocorrelation and/or fractional integration.3 

 First, we estimate the value of d for the four series at the highest frequency (i.e., 

with data collected each minute). For this purpose we consider the following model: 

,...,2,1;)1(; ==−++= tuxLxty tt
d

tt βα  (2) 

where yt is the time series observed, � and � are the deterministic terms (an intercept and 

a linear time trend respectively), and xt is assumed to be I(d), where d can be any real 

number. Different assumptions will be made about the error term ut.4 

[Insert Table 1 about here] 
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 Table 1 displays the results of the Whittle estimates of d along with the 95% 

confidence interval of the non-rejection values according to Robinson’s (1994) 

parametric approach. The error term ut is assumed to be a white noise in Table 1a, an 

AR(1) process in Table 1b, whilst it is specified using the exponential spectral model of 

Bloomfield (1973) in Table 1c. This is a non-parametric approach to modelling I(0) 

terms that produces autocorrelations decaying exponentially as in the AR(MA) case. 

 Table 1 shows the results of the estimated values of d, for the three standard cases 

of no regressors (i.e., � = � = 0 in (2)), an intercept (� unknown and � = 0), and an 

intercept with a linear time trend (� and � unknown). Starting with the case of white 

noise errors (Table 1a), it can be seen that for “Open” and “Last” the estimates are 

slightly below 1, though the unit root null cannot be rejected in any case. However, for 

“High” and “Low” the unit root hypothesis is rejected in favour of higher degrees of 

integration in the cases of an intercept and an intercept with a linear time trend. When 

allowing autocorrelation in the form of an AR(1) process (in Table 1b), the results vary 

depending on the inclusion or not of deterministic terms. Specifically, if no regressors are 

included in the regression model, d is found to be strictly higher than 1 for all four series; 

however, when including deterministic terms, the unit root null is almost never rejected. 

The only exception is “High” with a linear trend, when the estimated value of d is found 

to be 0.936, and the interval excludes the unit root in favour of mean reversion. When 

adopting the more general Bloomfield specification (Table 1c), the unit root null 

hypothesis is never rejected. 

[Insert Figures 5 and 6 about here] 

                                                                                                                                                                            
3 Some authors may argue that it does not make sense to model each series separately and treat them in the 
same way. However, a simple inspection at Figure 1 shows that the four series move roughly in a very 
similar way. 
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Next we focus on the variance of the return series and examine the squared and 

absolute returns, which are used as proxies for volatility. These two measures have been 

widely employed in the financial literature to measure volatility.5 Plots of the absolute 

return series are displayed in Figure 5, while Figure 6 shows the squared returns.  

[Insert Tables 2 and 3 about here] 

 Tables 2 and 3 report the estimates of d for the absolute and squared returns 

respectively under the assumption that the error term is white noise. Very similar results 

were obtained imposing weakly autocorrelated errors. The estimates are significantly 

positive in all cases, the values ranging between 0.142 (“Last” with an intercept) and 

0.162 (“High” with no regressors) in case of the absolute returns, and between 0.096 

(“Low” with a linear trend) and 0.109 (“Last” with an intercept) for the squared returns. 

 The results presented so far are consistent with those reported in the literature for 

lower frequency data, that is, the exchange rates appear to be I(1) implying that returns 

are I(0), and the associated volatility is I(d) with a positive and small value of d. 

 In the context of high frequency data, it is interesting to investigate if the same 

result holds as the distance between observations increases. For this purpose we examine 

again the long memory property of the same variables but now using series which are 

collected every 2, 3, 5 and 10 minutes respectively. 

[Insert Table 4 about here] 

 Table 4 displays the results using these lower frequencies. Starting with data 

collected every 2 minutes (see Table 4a), it can be seen that the unit root null is almost 

                                                                                                                                                                            
 
5 Absolute returns were employed among others by Ding et al. (1993), Granger and Ding (1996), 
Bollerslev and Wright (2000), Gil-Alana (2005), Cavalcante and Assaf (2004), Sibbertsen (2004) and 
Cotter (2005), whereas squared returns were used in Lobato and Savin (1998), Gil-Alana (2003), 
Cavalcante and Assaf (2004) and Cotter (2005). 
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never rejected. The only two exceptions are “Low” with an intercept, and with an 

intercept and a linear trend, where d is strictly above 1. Focusing now on the data 

collected every 3 minutes (Table 4b), it can be seen that the estimated values of d are 

slightly smaller, and the unit root null hypothesis is never rejected. In general the 

estimates of d are smaller by about 0.020 compared with those reported in Table 4a. 

Table 4c concerns the data collected every 5 minutes. Once more the values are smaller 

than in previous tables, and the same happens in Table 4d which concerns data collected 

every 10 minutes. In this case, even values which are strictly smaller than 1 are found, 

implying a small degree of mean-reverting behaviour. 

[Insert Tables 5 and 6 about here] 

 Tables 5 and 6 display the estimates of d for the absolute and squared returns series 

respectively, again assuming white noise errors. The results here are slightly more 

ambiguous as there is no monotonic decrease in the value of d as the time distance 

between the observations increases. For example, in the two cases of absolute and 

squared returns the highest values for “Last” occur for data collected every 3 minutes, 

and for “High” and “Low” for data collected every 5 minutes. This lack of a relationship 

between data frequency and the order of integration in the volatility processes is also 

found in the case of autocorrelated errors. 

 Finally, we employ a semiparametric method to estimate the values of d in our 

series of interest. Therefore, no functional form is assumed for the error term. We 

employ here a procedure developed by Robinson (1995). This method is essentially a 

local ‘Whittle estimator’ in the frequency domain, which uses a band of frequencies that 

degenerates to zero. The estimator is implicitly defined by: 
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and d ∈ (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995) proved that: 

,)4/1,0()ˆ( ∞→→− TasNddm do  

where do is the true value of d.6 

[Insert Figures 7 – 10 about here] 

 The results based on the above approach are displayed in Figures 7 – 10. It can be 

seen that the values are similar for the four series. Along with the estimates we also 

present the 95% confidence band corresponding to the I(1) hypothesis. We display the 

estimates for a range of values of the bandwidth parameter m. The highest estimates 

correspond to the highest frequency, while the lowest ones correspond to the series with 

data collected every 10 minutes. 

 

4. Conclusions 

Despite the existence of a very extensive literature, there is still lack of consensus on 

what is the most appropriate model specification for many financial series. For instance, 

                                                           
6 This method has been further examined and refined by Velasco (1999), Velasco and Robinson (2000), 
Phillips and Shimotsu (2004, 2005) and others. However, such refined methods require additional user-
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whether asset returns of asset prices are predictable or not is still controversial: the 

efficiency market hypothesis suggests that they should follow a random walk (see Fama, 

1970), but mean reversion is often found (see, e.g., Poterba and Summers, 1988). More 

recently, it has become clear that it is essential to consider the possibility of fractional 

integration in order to analyse the long-memory properties and to allow for a much richer 

dynamic specification. Various models have been suggested, increasingly general (see, 

e.g., Caporale and Gil-Alana, 2002, 2007, 2008). However, a potentially crucial issue 

which has been overlooked is the extent to which the fractional differencing parameter 

might be sensitive to the data frequency.  This has been analysed in the present paper by 

using high frequency data on the British pound-US dollar spot exchange rate. In 

particular, we examined intra-day data (collected every 1, 2, 3, 5 and 10 minutes) of the 

open, close, high and low values of the exchange rate. In brief, we find evidence that a 

lower degree of integration is associated with lower data frequencies. In particular, when 

the data are collected every 10 minutes there are several cases with values of d strictly 

smaller than 1, implying a certain degree of mean-reverting behaviour. This holds for all 

the four series examined.  

 It might be asked whether the lower degrees of dependence estimated for the lower 

frequencies is the result of small sample bias. However, it should be noted that even at 

the lowest data frequencies the sample size is large enough to justify the estimation of a 

fractional integration model. Other approaches could be applied to these and other high 

frequency data such as the one suggested by Ohanissian et al. (2008) in their study on 

fractional integration, structural breaks and data frequency. Moreover, the presence of 

other issues in high frequency financial data such as non-linear structures (Dunis and 

                                                                                                                                                                            
chosen parameters, and the estimates of d may be very sensitive to the choice of these parameters. In this 
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Zhou, 1998), turbulent cascades (Ghashghaie et al., 1996) and various other market 

microstructure issues will be examined in future papers. 

                                                                                                                                                                            
respect, the method of Robinson (1995) seems computationally simpler. 
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Figure 1: Series in levels 
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Figure 2: Returns  
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Figure 3: Correlograms of returns 
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Figure 4: Periodograms of returns 
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Table 1a: Estimates of d based on a model with white noise errors 

 No regressors An intercept A linear time trend 

Open 0.997  (0.970,  1.027) 0.983  (0.955,  1.015) 0.983  (0.956,  1.015) 

High 0.998  (0.971,  1.028) 1.101  (1.066,  1.141) 1.101  (1.066,  1.141) 

Low 0.997  (0.970,  1.027) 1.130  (1.095,  1.169) 1.130  (1.095,  1.169) 

Last 0.998  (0.970,  1.028) 0.977  (0.950,  1.007) 0.977  (0.950,  1.007) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 
Table 1b: Estimates of d based on a model with AR(1) errors 

 No regressors An intercept A linear time trend 

Open 1.381  (1.328,  1.441) 0.973  (0.923,  1.031) 0.974  (0.924,  1.031) 

High 1.382  (1.329,  1.442) 0.934  (0.879,  0.996) 0.936  (0.883,  0.996) 

Low 1.381  (1.327,  1.440) 0.969  (0.907,  1.037) 0.970  (0.910,  1.037) 

Last 1.382  (1.329,  1.442) 1.004  (0.954,  1.060) 1.004  (0.955,  1.060) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 
Table 1c: Estimates of d based on a model with Bloomfield errors 

 No regressors An intercept A linear time trend 

Open 0.997  (0.944,  1.041) 0.963  (0.922,  1.029) 0.970  (0.923,  1.029) 

High 0.991  (0.950,  1.042) 0.962  (0.914,  1.006) 0.962  (0.915,  1.006) 

Low 0.990  (0.951,  1.047) 0.988  (0.939,  1.047) 0.988  (0.940,  1.047) 

Last 0.998  (0.950,  1.049) 1.010  (0.955,  1.057) 1.010  (0.955,  1.057) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Figure 5: Absolute returns                
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Figure 6: Squared returns                     
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Table 2: Estimates of d for the absolute returns in a model with white noise errors 

 No regressors An intercept A linear time trend 

Open 0.149  (0.131,  0.171) 0.148  (0.130,  0.168) 0.144  (0.126,  0.165) 

High 0.162  (0.142,  0.185) 0.159  (0.140,  0.181) 0.156  (0.136,  0.178) 

Low 0.154  (0.134,  0.171) 0.151  (0.132,  0.172) 0.149  (0.129,  0.176) 

Last 0.143  (0.123,  0.167) 0.142  (0.124,  0.163) 0.136  (0.117,  0.158) 
 
 
Table 3: Estimates of d for the squared returns in a model with white noise errors 

 No regressors An intercept A linear time trend 

Open 0.106  (0.088,  0.126) 0.107  (0.089,  0.127) 0.103  (0.085,  0.124) 

High 0.098  (0.078,  0.121) 0.099  (0.080,  0.122) 0.094  (0.074,  0.118) 

Low 0.098  (0.079,  0.120) 0.099  (0.080,  0.121) 0.096  (0.077,  0.118) 

Last 0.106  (0.088,  0.128) 0.109  (0.090,  0.130) 0.102  (0.082,  0.124) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Table 4a: Estimates of d based on a model with white noise errors (2 minutes) 
 No regressors An intercept A linear time trend 

Open 0.994  (0.956,  1.038) 0.980  (0.939,  1.028) 0.980  (0.940,  1.028) 

High 0.994  (0.956,  1.038) 1.034  (0.989,  1.087) 1.034  (0.989,  1.087) 

Low 0.995  (0.957,  1.039) 1.062 (1.017,  1.116) 1.062 (1.017,  1.115) 

Last 0.994  (0.957,  1.039) 0.989  (0.948,  1.035) 0.989  (0.949,  1.035) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 

Table 4b: Estimates of d based on a model with white noise errors (3 minutes) 
 No regressors An intercept A linear time trend 

Open 0.992  (0.946,  1.047) 0.962  (0.912,  1.019) 0.963  (0.914,  1.019) 

High 0.992  (0.946,  1.047) 1.003  (0.950,  1.066) 1.003  (0.951,  1.065) 

Low 0.993  (0.947,  1.048) 1.041 (0.984,  1.108) 1.041 (0.985,  1.107) 

Last 0.992  (0.946,  1.048) 0.958  (0.907,  1.016) 0.958  (0.910,  1.016) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 
Table 4c: Estimates of d based on a model with white noise errors (5 minutes) 

 No regressors An intercept A linear time trend 

Open 0.990  (0.930,  1.064) 0.941  (0.872,  1.024) 0.942  (0.877,  1.024) 

High 0.990  (0.931,  1.064) 0.948  (0.880,  1.030) 0.949  (0.885,  1.030) 

Low 0.990  (0.931,  1.064) 0.981 (0.910,  1.069) 0.982 (0.913,  1.068) 

Last 0.989  (0.930,  1.063) 0.942  (0.874,  1.024) 0.944  (0.879,  1.023) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 

Table 4d: Estimates of d based on a model with white noise errors (10 minutes) 
 No regressors An intercept A linear time trend 

Open 0.977  (0.895,  1.088) 0.831  (0.719,  0.957) 0.848  (0.761,  0.961) 

High 0.978  (0.895,  1.089) 0.869  (0.766,  0.990) 0.881  (0.794,  0.991) 

Low 0.977  (0.895,  1.088) 0.860 (0.750,  0.987) 0.873 (0.784,  0.988) 

Last 0.978  (0.895,  1.089) 0.861  (0.755,  0.983) 0.872  (0.785,  0.985) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Table 5a: Estimates of d for the absolute returns (2 minutes) 

 No regressors An intercept A linear time trend 

Open 0.188  (0.157,  0.225) 0.182  (0.153,  0.217) 0.179  (0.149,  0.215) 

High 0.181  (0.152,  0.216) 0.179  (0.151,  0.211) 0.174  (0.146,  0.208) 

Low 0.176  (0.148,  0.210) 0.171 (0.144,  0.202) 0.168 (0.141,  0.200) 

Last 0.143  (0.116,  0.173) 0.140  (0.116,  0.169) 0.136  (0.111,  0.166) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 

Table 5b: Estimates of d for the absolute returns (3 minutes) 
 No regressors An intercept A linear time trend 

Open 0.159  (0.124,  0.202) 0.157  (0.124,  0.197) 0.151  (0.116,  0.192) 

High 0.178  (0.143,  0.221) 0.176  (0.143,  0.216) 0.171  (0.136,  0.212) 

Low 0.165  (0.127,  0.212) 0.159 (0.124,  0.202) 0.156 (0.120,  0.200) 

Last 0.167  (0.131,  0.211) 0.168  (0.135,  0.210) 0.160  (0.124,  0.204) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 

Table 5c: Estimates of d for the absolute returns (5 minutes) 
 No regressors An intercept A linear time trend 

Open 0.189  (0.140,  0.247) 0.176  (0.133,  0.231) 0.175  (0.131,  0.230) 

High 0.194  (0.144,  0.259) 0.190  (0.144,  0.249) 0.186  (0.138,  0.247) 

Low 0.216  (0.165,  0.281) 0.203 (0.157,  0.262) 0.202 (0.155,  0.261) 

Last 0.149  (0.106,  0.204) 0.150  (0.109,  0.202) 0.144  (0.102,  0.198) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 
Table 5d: Estimates of d for the absolute returns (10 minutes) 

 No regressors An intercept A linear time trend 

Open 0.143  (0.077,  0.233) 0.136  (0.076,  0.213) 0.133  (0.071,  0.212) 

High 0.088  (0.028,  0.174) 0.086  (0.028,  0.161) 0.084  (0.025,  0.160) 

Low 0.133  (0.058,  0.233) 0.121 (0.055,  0.207) 0.121 (0.054,  0.207) 

Last 0.088  (0.024,  0.176) 0.083  (0.024,  0.156) 0.083  (0.024,  0.160) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Table 6a: Estimates of d for the squared returns (2 minutes) 

 No regressors An intercept A linear time trend 

Open 0.129 (0.096,  0.164) 0.130  (0.101,  0.164) 0.126  (0.100,  0.162) 

High 0.115  (0.087,  0.149) 0.118  (0.090,  0.151) 0.110  (0.080,  0.145) 

Low 0.113  (0.086,  0.145) 0.115 (0.088,  0.146) 0.111 (0.083,  0.143) 

Last 0.097  (0.072,  0.127) 0.100  (0.075,  0.129) 0.093  (0.067,  0.124) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 
Table 6b: Estimates of d for the squared returns (3 minutes) 

 No regressors An intercept A linear time trend 

Open 0.106  (0.073,  0.148) 0.108  (0.075,  0.149) 0.103  (0.068,  0.145) 

High 0.123  (0.090,  0.165) 0.125  (0.092,  0.166) 0.119  (0.084,  0.161) 

Low 0.128  (0.089,  0.176) 0.129 (0.091,  0.176) 0.126 (0.087,  0.174) 

Last 0.126  (0.090,  0.171) 0.130  (0.094,  0.174) 0.123  (0.084,  0.169) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 

Table 6c: Estimates of d for the squared returns (5 minutes) 
 No regressors An intercept A linear time trend 

Open 0.136  (0.088,  0.198) 0.135  (0.089,  0.195) 0.133  (0.085,  0.194) 

High 0.144  (0.094,  0.210) 0.147  (0.097,  0.211) 0.141  (0.089,  0.208) 

Low 0.160  (0.111,  0.224) 0.159 (0.111,  0.221) 0.157 (0.108,  0.220) 

Last 0.110  (0.067,  0.166) 0.113  (0.070,  0.169) 0.107  (0.061,  0.164) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 

 
 

Table 6d: Estimates of d for the squared returns (10 minutes) 
 No regressors An intercept A linear time trend 

Open 0.088  (0.027,  0.171) 0.090  (0.028,  0.171) 0.085  (0.021,  0.168) 

High 0.044  (-0.015,  0.125) 0.045  (-0.016,  0.127) 0.041  (-0.023,  0.125) 

Low 0.083  (0.019,  0.177) 0.084 (0.020,  0.169) 0.082 (0.016,  0.168) 

Last 0.049  (-0.011,  0.132) 0.051  (-0.011,  0.133) 0.049  (-0.015,  0.132) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Figure 7: Estimates of d for the OPEN series at different data frequencies 
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 The horizontal axis concerns the bandwidth parameter while the vertical one refers to the estimated value of d. 
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Figure 8: Estimates of d for the HIGH series at different data frequencies 
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 The horizontal axis concerns the bandwidth parameter while the vertical one refers to the estimated value of d. 
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Figure 9: Estimates of d for the LOW series at different data frequencies 
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Figure 10: Estimates of d for the LAST series at different data frequencies 
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 The horizontal axis concerns the bandwidth parameter while the vertical one refers to the estimated value of d. 
 

 
 


