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ABSTRACT 
 
This paper examines several US monthly financial time series data using fractional 
integration and cointegration techniques. The univariate analysis based on fractional 
integration aims to determine whether the series are I(1) (in which case markets might 
be efficient) or alternatively I(d) with d < 1,  which implies mean reversion. The 
multivariate framework exploiting recent developments in fractional cointegration allows 
to investigate in greater depth the relationships between financial series. We show that 
there might exist many (fractionally) cointegrated bivariate relationships among the 
variables examined, for some of which only standard cointegration tests had previously 
been carried out. 
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1. Introduction 

This paper re-examines the statistical properties of a number of US financial series (such 

as stock market prices, dividends, earnings, consumer prices, long-term interest rates) 

contained in the well-known dataset which can be downloaded from Robert Shiller’s 

homepage, and which also are described in chapter 26 of Shiller’s (1989) book on 

“Market Volatility”.   

In the existing literature, the Efficient Markets Hypothesis (EMH) has recently 

been tested using the present value (PV) model of stock prices, since, if stock market 

returns are not predictable, as implied by the EMH, stock prices should equal the present 

value of expected future dividends, and therefore stock prices and dividends should be 

cointegrated, as pointed out by Campbell and Shiller (1987). In their seminal paper, they 

tested the PV model of stock prices adopting Engle and Granger’s (1987) cointegration 

procedure, an approach which is valid provided stock prices and dividends are stationary 

in first differences rather than in levels.1 They used the Standard and Poor’s (S&P’s) 

dividends and value-weighted and equally-weighted New York Stock Exchange (NYSE) 

1926-1986 datasets. In the case of the S&P series they rejected the unit root hypothesis 

for dividends but not for stock prices, whilst they could not reject it for either when using 

the NYSE data. As for cointegration, their results were also mixed, some test statistics 

rejecting the null hypothesis of no-cointegration, other failing to reject it. These 

inconclusive results may be a consequence of assuming integer orders of differentiation 

as in the case of standard integration and cointegration models not allowing for non-

integer values. Other empirical papers analysing cointegration in stock markets are 

                                                           
1 A constant discount rate is assumed in that study. In a subsequent paper (Campbell and Shiller, 1988) this 
assumption is relaxed to allow for time-varying discount rates in the PV model. 
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Hakkio and Rush (1989), Baillie and Bollerslev (1989), Richards (1995), Crowder 

(1996), and Rangvid (2001). 

However, as already mentioned, the discrete options I(1) and I(0) of classical 

cointegration analysis are rather restrictive: the equilibrium errors might in fact be a 

fractionally integrated I(d)-type process, with stock and dividends being fractionally 

cointegrated. This is stressed by Caporale and Gil-Alana (2004), who propose a simple 

two-step residuals-based strategy for fractional cointegration based on the approach of 

Robinson (1994a): first the order of integration of the individual series is tested, and then 

the degree of integration of the estimated residuals from the cointegrating regression. 

They find that the cointegrating relationship between stock prices and dividends 

possesses long memory, implying that the adjustment to equilibrium takes a long time 

and that PV models of stock prices are valid only over a long horizon.  

The present study makes the following twofold contribution. Firstly, it applies 

univariate tests based on long memory in order to establish the order of integration of the 

individual series, extending the analysis from the I(1)/I(0) cases to the more general case 

of fractional integration. Noting that the results can vary substantially depending on the 

methodology used we employ a battery of non-parametric, semiparametric and 

parametric techniques. Secondly, it examines bivariate relationships among the variables 

using the most recent fractional cointegration techniques, which also allows for slow 

adjustment to equilibrium. To our knowledge, although numberless studies exist 

analysing such relationships, ours is the first to do so within such a framework. The 

implications of the findings are also discussed. In particular, we argue that it is the 

presence of long memory in the cointegrating relationships (already documented in 

Caporale and Gil-Alana, 2004) that can explain the inconclusiveness of the results of 
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other studies only allowing for integer degrees of differentiation. The layout of the paper 

is the following. Section 2 reviews the concepts of fractional integration and 

cointegration and the methods applied in this study. Section 3 describes the data and 

reports the empirical results. Section 4 offers some concluding remarks. 

 

2. Methodology 

The methodology employed in this study is based on the concept of long memory or long 

range dependence. Given a zero-mean covariance stationary process { tx , ,...1,0 ±=t } 

with autocovariance function γu = E(xt, xt+u), in the time domain, long memory is defined 

such that:  

∞=∑
∞

−∞=u
uγ . 

Now, assuming that xt has an absolutely continuous spectral distribution function, with a 

spectral density function given by: 
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according to the frequency domain definition of long memory the spectral density 

function is unbounded at some frequency λ in the interval [0, π), i.e., 

).,0[,as,)(f ** π∈λλ→λ∞→λ  

Most of the empirical literature in the last twenty years has focused on the case where the 

singularity or pole in the spectrum occurs at the 0 frequency, i.e., 

.as,)(f +→∞→ 0λλ  

This is the standard case of I(d) models of the form: 
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,...,1,0,)1( ±==− tuxL tt
d      (1) 

where L is the lag-operator (Lxt = xt-1) and ut is I(0), which is defined as a covariance 

stationary process with a spectral density function that is positive and bounded at all 

frequencies. In this paper we assume that xt = ut = 0 for t ≤   0. In other words, we adopt 

the Type II definition of fractional integration (see Marinucci and Robinson, 1999, for 

the differences from other processes). This is important since the limit distribution of the 

procedures employed is clearly affected by the choice of Type I / Type II definitions of 

fractional integration (Davidson and Hashimzade, 2009). We also conducted the analysis 

under the assumption of Type I fractional integration considering random numbers and 

the results were completely in line with those reported in the paper. Finally, one should 

also note that fractional integration may also occur at some other frequencies away from 

0, as in the case of seasonal/cyclical models (see Arteche (2002), Arteche and Robinson 

(2000) and Hassler, Rodrigues and Rubia (2009) among others). 

In the multivariate case, the natural extension of fractional integration is the 

concept of fractional cointegration. Though the original idea of cointegration, as in Engle 

and Granger (1987), allows for fractional orders of integration, all the empirical work 

carried out during the 1990s was restricted to the case of integer degrees of differencing. 

Only in recent years have fractional values also been considered. In what follows, we 

briefly describe the methodology used in this paper for testing fractional integration and 

cointegration in the case of Shiller’s financial time series data. 

 

2a. Fractional integration 

There exist several methods for estimating and testing the fractional differencing 

parameter d. Some of them are parametric while others are semiparametric or even non-
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parametric, and can be specified in the time or in the frequency domain. In this paper, we 

use first a parametric approach developed by Robinson (1994a). This is a testing 

procedure based on the Lagrange Multiplier (LM) principle that uses the Whittle function 

in the frequency domain. It tests the null hypothesis: 

,: oo ddH =       (2)  

for any real value do, in a model given by the equation (1), where xt can be the errors in a 

regression model of the form: 

,...,2,1, =+= txzy tt
T

t β    (3) 

where yt is the observed time series, β is a (kx1) vector of unknown coefficients and zt is 

a set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with 

a linear time trend (zt = (1, t)T), or any other type of deterministic processes. Robinson 

(1994a) showed that, under certain very mild regularity conditions, the LM-based 

statistic )ˆ(r : 

,nas)1,0(Nr̂ d ∞→→  

where “ →d “ stands for convergence in distribution, and this limit behaviour holds 

independently of the regressors zt used in (3) and the specific model for the I(0) 

disturbances ut in (1). Other parametric approaches (Sowell, 1992; Beran, 1995) were 

also employed in the empirical analysis and produced very similar results to those 

obtained using the method of Robinson (1994a). 

In addition, we employ a semiparametric method (Robinson, 1995a) which is 

essentially a local ‘Whittle estimator’ in the frequency domain, using a band of 

frequencies that degenerates to zero. The estimator is implicitly defined by: 
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where I(λs) is the periodogram of the raw series, xt, and d ∈ (-0.5, 0.5). Under finiteness 

of the fourth moment and other mild conditions, Robinson (1995a) proved that: 

,nas)4/1,0(N)dd̂(m d* ∞→→−  

where d* is the true value of d. This estimator is robust to a certain degree of conditional 

heteroscedasticity and is more efficient than other semi-parametric competitors. 

 

2b. Fractional cointegration 

Engle and Granger (1987) suggested that, if two processes xt and yt are both I(d), then it 

is generally true that for a certain scalar a ≠  0, a linear combination wt = yt – axt, will 

also be I(d), although it is possible that wt be I(d - b) with b > 0. Given two real numbers 

d, b, the components of the vector ct are said to be cointegrated of order d, b, denoted ct ~ 

CI(d, b) if: 

 (i)  all the components of ct are I(d), 

 (ii)  there exists a vector α ≠  0 such that st = α’ct ~ I(γ) = I(d – b), b > 0.  

Here, α and st are called the cointegrating vector and error respectively. This prompts 

consideration of an extension of Phillips' (1991) triangular system, which for a very 

simple bivariate case is: 

),(1 γν −+= ttt uxy       (5) 

                ),(2 dux tt −=        (6)  
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for t = 0, ±1, ..., where for any vector or scalar sequence wt, and any ζ, we introduce the 

notation wt(ζ) = (1 – L)ζwt. Note that ut = (u1t, u2t)T is now a bivariate zero mean 

covariance stationary I(0) unobservable process and ν ≠  0, γ < d. Under (5) and (6), xt is 

I(d), as is yt by construction, while the cointegrating error yt – νxt is I(γ). Model (5) and 

(6) reduces to the bivariate version of Phillips' (1991) triangular form when γ = 0 and d = 

1, which is one of the most popular models displaying CI(1, 1) cointegration considered 

in both the empirical and theoretical literature.  

Next, we focus on the estimation of the cointegrating relationship, and in 

particular on the estimation of ν in (5) and (6). The simplest approach is to estimate it 

using the well-known ordinary least squares (OLS) estimator 

,ˆ

1

2
1

∑

∑
=

=

=
n

t
t

n

t
tt

t
ols

x

yx
ν       (7) 

where the superscript “t“ indicates time domain estimation. Here, in the standard 

cointegrating setting, with γ = 0 and d = 1, it has been shown that in general t
olsν̂  is n-

consistent with non-standard asymptotic distribution. In fractional settings, the properties 

of OLS could be different from those within this framework. When the observables are 

purely nonstationary (so that d ≥  0.5), consistency of t
olsν̂  is retained, but its rate of 

convergence and asymptotic distribution depend crucially on γ and d.  

An alternative method of estimating ν is in the frequency domain. Consider the 

estimator 



 9

( )

( )
,ˆ

1

0

1

0

∑

∑
= −

=

−

=
n

j
jx

n

j
jxy

f
ols

I

I

λ

λ
ν       (8) 

where λj = 2πj/n, j = 1, ..., n, are the Fourier frequencies, and for arbitrary sequences 

,, tt ζξ  (possibly the same one as tξ ), we define the discrete Fourier transform and 

(cross) -periodogram 
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Here, the discrete Fourier transform at a given frequency captures the components of the 

series related to this particular frequency. Robinson (1994b) proposed the narrow band 

least squares (NBLS) estimator 
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where 1 ≤  m ≤  n/2; sj = 1 for j = 0, n/2, and 2, otherwise; and (1/m) + (m/n) → 0 as n → 

∞. He showed the consistency of this estimator even under stationary cointegration. As in 

the case of OLS, in general NBLS has a non-standard limiting distribution. 

Assuming that the process ut in (5) and (6) has a parametric spectral density 

( ) ( ),;θλλ ff =  where θ  is an unknown vector of short-memory parameters, Robinson 

and Hualde (2003), based on generalized least squares (GLS)-type corrections, propose 

methods to estimate optimally (under Gaussianity) ν when d – γ > 0.5 (named strong 

cointegration). Denoting  

))(),((),( ′= dxcydcz ttt , )0,1( ′=ζ , 1);();( −′= hfhp λζλ , 
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they considered five different estimators given by: 

),ˆ,ˆ,ˆ(ˆ),ˆ,,ˆ(ˆ),ˆ,ˆ,(ˆ),ˆ,,(ˆ),,,(ˆ θδγνθδγνθδγνθδγνθδγν    (10) 

where ,ˆ,ˆ,ˆ θδγ  are corresponding estimators of the nuisance parameters γ, d and θ. The 

estimators in (10) reflect different knowledge about the structure of the model, the first 

being in general unfeasible, the second only assuming knowledge of the integration 

orders (as was done previously in the standard cointegrating literature), whereas the last 

estimator represents the most realistic case. Under regularity conditions, Robinson and 

Hualde (2003) showed that any of the estimators in (10) is nd-γ-consistent with identical 

mixed-Gaussian asymptotic distributions, leading to Wald tests on the parameter ν , 

),ˆ,ˆ,ˆ(),ˆ,,ˆ(),ˆ,ˆ,(),ˆ,,(),,,( θδγθδγθδγθδγθδγ WWWWW    (11) 

where  ,}1),,(ˆ){,(),,( 2−= hdchcbhdcW ν  with a chi-squared limit distribution for the 

values of d and γ. Hualde and Robinson (2007) propose an estimator of ν in (5) and (6) in 

the case when d – γ < 0.5 (named weak cointegration).  As in Robinson and Hualde 

(2003), this method is based on a GLS-type  correction.  

 

3. Data and Empirical results 

The monthly series analysed have been collected by Robert Shiller and his associates, 

and are available on http://www.econ.yale.edu/~shiller/. The sample period goes from 

1871m1 to 2010m6. They are described in chapter 26 of Shiller’s (1989) book on 

“Market Volatility”, where further details can be found, and are constantly updated and 



 11

revised. Specifically, they are the following series: stock market prices (monthly 

averages of daily closing S&P prices, computed from the S&P four-quarter tools for the 

quarter since 1926, with linear interpolation to monthly figures); dividends (an index), 

earnings (also an index), a consumer price index (Consumer Price Index - All Urban 

Consumers) used for computing real values of the previous variables, a long-term interest 

rate (GS10, which is the yield on the 10-year Treasury bonds), and also a cyclically 

adjusted price earnings ratio. 

 

3a. Univariate analysis: fractional integration 

We first employ the parametric approach of Robinson (1994a) described in Section 2, 

assuming that the disturbances are white noise. Thus, time dependence is exclusively 

modelled through the fractional differencing parameter d. In particular, we consider the 

set-up in (3) and (1), with zT = (1,t)T, testing Ho (2) for do in [0. 0.001, 0.002, …, 2]. In 

other words, the model under the null becomes: 

,...,2,1)1(;10 ==−++= tuxLxty tt
d

tt oββ    (12) 

and white noise ut. 

Table 1 displays the estimates of d (obtained as the values of do that produce the 

lowest −r̂ statistics in absolute value) along with the 95% confidence band of the non-

rejection values of do using Robinson’s (1994a) parametric approach. For each series, we 

display the three cases commonly examined in the literature, i.e., the cases of no 

regressors (imposing β0 = β1 = 0 a priori), an intercept (β0 unknown and β1 = 0 a priori), 

and an intercept with a linear time trend (β0 and β1 unknown). The inclusion of a time 

trend may appear unrealistic in the context of financial variables. Note, however, that in 
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the case of fractional (or integer) differentiation the time trend disappears in the long 

run.2 

[Insert Table 1 about here] 

 The first noticeable feature in this table is that all the estimated values of d are 

above 1 and the unit root null hypothesis (i.e., d = 1) is rejected in all cases at the 5% 

level. In general the values are very similar for the three cases with deterministic terms, 

although the results change substantially from one series to another. Specifically, values 

of d above 1.5 are found in the case of dividends, earnings and real earnings. For the 

remaining series the values are slightly above 1, but still significantly different from 1. 

However, these results are based on a model characterised by the lack of (weak)-

autocorrelation for the error term. Therefore, in what follows we assume that the 

disturbances are weakly autocorrelated and model them first using the exponential 

spectral model of Bloomfield (1973). This is an approach to modelling the I(0) error term 

that produces autocorrelations decaying exponentially as in the AR(MA) case. Therefore, 

it approximates ARMA structures with a small number of parameters, and performs 

extremely well in the context of Robinson’s (1994a) tests (see Gil-Alana, 2004). The 

results using this approach are displayed in Table 2. 

[Insert Tables 2 and 3 about here] 

 It can be seen that the values are much smaller than in the previous case of white 

noise disturbances. One series (long-term interest rates) has values which are strictly 

below 1, implying mean-reverting behaviour; for dividends and real stock prices the unit 

root null cannot be rejected. It is slightly rejected (at the 5% level but not at the 1% level) 

                                                           
2 For example, if do = 1 in (12) with white noise  ut, the model becomes, for t > 1, a random walk with a 
drift. Also, (1-L)do disappears in the long run for 0 < do < 1, and tends to a constant for 1 ≤  do < 2. 
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for stock prices, consumer price index and price/earning ratio, and it is decisively 

rejected in favour of higher orders of integration for the remaining two series (earnings 

and real earnings). As a final specification, given the monthly frequency of the data, we 

assume that the error term follows a seasonal AR(1) process. The inclusion of seasonal 

dummies produced insignificant coefficients in all cases. The results (displayed in Table 

3) are very similar to those based on white noise disturbances, with estimates of d which 

are all strictly above 1. Deeper inspection indicates that time trends are not required in 

any case, the intercept being sufficient for the deterministic component. Moreover, LR 

tests and other residuals-based tests suggest that the d-differenced series may all be 

weakly (non-seasonally) autocorrelated, implying that the model with Bloomfield 

disturbances may approximate accurately the order of integration of the series. 

Nevertheless, in view of the sensitiveness of the results to the specification of the error 

term, we also apply a semiparametric method that does not specify a functional form for 

the I(0) disturbance term. 

[Insert Figure 1 and Table 4 about here] 

 Figure 1 displays for each series the estimates of d based on the semiparametric 

method of Robinson (1995a), i.e., d̂  as given by (4). The estimates of d are shown for a 

whole range of values of the bandwidth parameter m = 1, 2, …, n/2 (on the horizontal 

axis). Alternatively, we could have chosen an optimal bandwidth parameter as suggested 

in Henry (2001). Note that the choice of the bandwidth is crucial in view of the trade-off 

between bias and variance: the asymptotic variance is decreasing with m while the bias is 

growing with m; the 95% confidence bands corresponding to the I(1) hypothesis are also 

displayed. It can be seen that, for small values of m, the unit root null is rejected in 

favour of mean reversion (d < 1) in the case of earnings, real dividends, real earning and 
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price earning ratio. For the remaining series (still with a small m) the estimated values of 

d are within the I(1) interval, except for the CPI series for which d is found to be strictly 

above 1. However, when the bandwidth parameter is large, the estimates are clearly 

above 1 in all cases, the only exception being long-term interest rates, with many values 

in the I(1) interval. Table 4 reports the numerical values for different bandwidth 

parameters, m = 25, 41 (= n0.5), 100, 200, 300 and 500: at the 5% level, there are several 

cases where the unit root null cannot be rejected. Specifically, in the case of m = (n)0.5, 

which has been widely considered in the empirical literature, the unit root null hypothesis 

cannot be rejected for stock prices, dividends, long-term interest rates, real stock prices 

and real dividends, whilst it is rejected in favour of mean reversion (i.e., d < 1) for 

earnings and real earnings, and in favour of d > 1 for the consumer price index. 

 Overall, the univariate results provide no evidence of mean reversion: all series 

appear to be I(1) or I(d) with d > 1, implying permanent effects of shocks, with evidence 

of long memory in many cases for the first differenced series as well. 

 

3b. Multivariate analysis: fractional cointegration 

A number of cointegrating (bivariate) relationships might exist between the individual 

variables examined in the previous subsection, in particular between: 

a) Stock prices and dividends 

b) Real stock prices and real dividends 

c) Price/Earning ratio and long-term interest rates, and 

d) Real stock prices and real earnings. 

Some of these relationships have been extensively analysed in the literature. 

Campbell and Shiller (1987) and DeJong (1992) tested a present value model of the stock 
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market using time series data for real US annual stock prices and dividends from 1871 to 

1986. In the first of these studies, they carried out ADF tests, with and without a time 

trend, on both individual series, and their results suggested that both series were 

integrated of order 1. When using the DF and ADF tests on the residuals from the 

cointegrating regressions, their results were mixed: the former test rejected the null 

hypothesis of no cointegration at the 5% level, while the latter narrowly failed to reject it 

at the 10% level. DeJong (1992) used a Bayesian approach to model these two variables 

and found evidence in favour of trend-stationary representations. Similarly, Koop (1991), 

using a different dataset, came to the same conclusion that both variables are stationary 

around a linear trend, and, even when assuming unit roots, he found little evidence of 

cointegration with I(0) errors. 

Pereira-Garmendia (2010) finds that real stock prices and real earnings are related 

through inflation. The relationship between stock prices, earnings and bond yield is 

analysed by Durre and Giot (2007). Papers examining long-run linkages between the 

price/earnings ratio and interest rates include Phillips (1999), Campbell and Shiller 

(1998, 2001), and Asness (2003) inter alia.  

 In all cases, we follow the same strategy. We first estimate individually the orders 

of integration of the series using now the log-periodogram-type estimator devised by 

Robinson (1995b). This is defined as: 

    ( ) ,/)(log)(ˆ
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and 0 ≤ l < m < n. The results for the individual series possibly involved in cointegration 

relationships are displayed in Table 5 (for m = n0.5 and l = 0, 1, …, 5).3 

 Next we test the homogeneity of the orders of integration in the bivariate systems 

(i.e., Ho: dx = dy), where dx and dy are now the orders of integration of the two individual 

series, by using an adaptation of Robinson and Yajima (2002) statistic xyT̂  to log-

periodogram estimation. The statistic is: 
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where h(n) > 0 and xyĜ  is the (xy)th element of  
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(see Gil-Alana and Hualde (2009) for evidence on the finite sample performance of this 

procedure). The results using this approach are displayed in Table 6. In general, we 

cannot reject the null hypothesis of equal orders of integration.4 In the following step, we 

perform the Hausman test for no cointegration of Marinucci and Robinson (2001) 

comparing the estimate xd̂  of dx with the more efficient bivariate one of Robinson 

(1995b), which uses the information that dx = dy = d*. Marinucci and Robinson (2001) 

show that 

( ) ,0
n
m

m
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2

i*im →+χ→−=   (15) 

                                                           
3 We will examine later these tables in detail for each of the potential cointegrating relationships. 
4 As in the case of the previous table, the comments for the specific series will be presented later. 
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with i = x, y, and where m < [n/2] is again a bandwidth parameter, analogous to that 

introduced earlier; id̂  are univariate estimates of the parent series, and *d̂  is a restricted 

estimate obtained in the bivariate context under the assumption that dx = dy. In particular, 
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with Yj = [log Ixx(λj), log Iyy(λj)]T, and .log1log
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s
jv  The limiting distribution 

above is presented heuristically, but the authors argue that it seems sufficiently 

convincing for the test to warrant serious considerations. The results using this approach 

are displayed in Table 7, and although when using the Hausman-type tests like those 

employed here a rejection of the null of no cointegration does not necessarily imply that 

the alternative (in our case, fractional cointegration) holds, we provide in the following 

pages supportive evidence of cointegration in many of the cases examined.  

In the final part of the analysis, we apply the methods of Robinson and Hualde 

(2003) and Hualde and Robinson (2007). We identify parametric models for f(λ) with ut 

in (5) and (6) having the form, 

,)( tt LAu ε=          (17) 

where εt is supposed to be an i.i.d. process, and A(L) is initially assumed to be diagonal, 

thus treating u1t and u2t separately. We approximate the two series as 

[ ],xv̂y)L1(u~ tolst
~

t1 −−= γ     (18)  

and 

,x)L1(u~ t
d~

t2 −=      (19) 
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to obtain estimates of γ and d previously estimated using other methods, and follow Box-

Jenkins-type procedures to identify the models within the ARMA class. The results based 

on this method are displayed in Tables 12a – 12d. 

 

[Insert Tables 5, 6 and 7 about here] 

 

 Next we examine each of the bivariate relationships. 

 

3.2.a Stock market prices and dividends 

[Insert Figure 2a about here] 

Figure 2a displays the plots of the two series. Both of them are relatively stable until the 

end of World War II, when they start increasing and also exhibit a higher degree of 

volatility. 

 Focusing first on the univariate results using the Whittle semiparametric estimator 

(Robinson, 1995a), it can be seen that for small values of m the unit root null cannot be 

rejected (see Table 4). Specifically, for m = (n)0.5 = 41, the estimates are 0.953 and 1.105 

respectively for stock prices and dividends. Similar evidence of unit roots, though with 

slightly higher values, is obtained with the log-periodogram estimator of Robinson 

(1995b) (see Table 5). For example, for l = 0, 1, 2, …, 5, and m = (n)0.5, the estimates of 

d for stock prices range between 1.041 and 1.080 and those for dividends between 1.026 

and 1.222. Testing now the homogeneity condition with Robinson and Yajima’s (2002) 

procedure (see Table 6), it is found that the two orders of integration are equal. Here h(n) 

is set equal to b-5-2i, with i = 1, 2, 3, 4 and 5 and b = (n)0.5, which is the bandwidth used in 

the estimation. The Hausmann test of no cointegration (Marinucci and Robinson, 2001) 
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(see Table 7) indicates that the estimates of d for the individual series using the bivariate 

representation (
*

d̂ in (15)) are very close to 1 and not significantly different from 1 

(using three different values for s in (15)), but evidence of cointegration is only obtained 

in one case out of the six considered (Has with s = 25 - see Table 7). 

 

3.2.b Real stock market prices and real dividends 

[Insert Figure 2b about here] 

The same relationship as above but in real terms is examined in this subsection. A time 

series plot of the two series is displayed in Figure 2b. They exhibit a similar pattern to the 

previous case although with more volatility in the early part of the sample, and may have 

a common stochastic trend. Starting again with the univariate tests (see Table 4), it is 

found that, when applying the Whittle semiparametric method of Robinson (1995a), for 

m = (n)0.5 = 41, the estimates of d are 0.888 and 0.896 respectively for real stock prices 

and real dividends, and the unit root null cannot be rejected for either series. Similar 

evidence is obtained with the log-periodogram estimator (see Table 5), with values of d 

ranging from 0.972 and 1.085 for real stock prices, and from 0.822 and 0.997 for real 

dividends. The test of homogeneity of the orders of integration (Table 6) implies equality 

in the values of d, whilst testing the null of no cointegration with the Hausman test of 

Robinson and Marinucci (2001) (in Table 7) suggests that the two series might be 

cointegrated. 

 

3.2.c Price / earning ratio and long-term interest rates 

[Insert Figure 2c about here] 
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These two series are plotted in Figure 2c. Interest rates appear to be more stable than the 

price/earning ratio during the first half of the sample; however, during the second half, 

there is a sharp increase in interest rates but not in the price/earning ratio. As for the 

Whittle estimates of d (see Table 4), it is found that for the price/earning ratio the values 

of d are very sensitive to the bandwidth parameter: for small values (e.g., 25, 41 or 100) 

the unit root is rejected in favour of values of d below 1; on the contrary, the unit root 

null cannot be rejected for m = 200, and it is rejected in favour of d > 1 for m = 300 and 

500. For the long-term interest rates, the results are more stable and the unit root null 

cannot be rejected for any bandwidth parameter. These results are corroborated by the 

log-periodogram estimates, displayed in Table 5. Thus, for the price/earning ratio, 

different results are obtained depending on whether or not the series is first-differenced, 

while for long-term interest rates the evidence strongly support the I(1) case. 

Interestingly, when performing the homogeneity tests of Robinson and Yajima (2002) we 

cannot reject the null of equal orders of integration, and the Hausman test reject in all 

cases the null hypothesis of no cointegration in favour of fractional cointegration (Table 

7). 

 

3.2.d Real stock market prices and real earnings 

[Insert Figure 2d about here] 

Plots of the two series are displayed in Figure 2d. They both have a very similar upward 

trend, which suggests that they may be cointegrated around a common stochastic trend. 

The estimated values of d using the Whittle method and for m = (n)0.5 (see Table 4) are 

1.071 for real stocks and 0.933 for real earnings, and in both cases we cannot reject the 

null of I(1) series. The same evidence in favour of unit roots is obtained with the log-
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periodogram estimates in Table 5, and the homogeneity restriction cannot be rejected in 

any single case (see Table 6). The Hausman tests of Robinson and Marinucci (2001) also 

indicate that the two series might be cointegrated since the null hypothesis of no 

cointegration is rejected in all cases in Table 7 in favour of long-memory cointegrating 

errors. 

 We estimated the cointegrating coefficients for each of the four relations using 

various methods  such as OLSf;  OLFf; and NBLS with different bandwidths; the 

results were similar for all procedures. On the basis of these coefficients, we estimated 

the orders of integration in the residuals of the cointegrating regression. First, we used 

the parametric approach of Robinson (1994a). However, the results varied considerably 

depending on the specification of the error term. Owing to this disparity, we estimate d 

with semiparametric methods. 

[Insert Tables 8 and 9 about here] 

 Table 8 displays the estimates of d based on the log periodogram regression  

estimator of Robinson (1995b) for m = n0.5 and l = 0 and l = 2. In many cases the 

estimates are significatively smaller than 1, especially for the price/earning ratio – long-

term interest rates and real stock prices – real earning relationships. Table 9 reports the 

results from the semiparametric Whittle method of Robinson (1995a), again applied to 

the estimated residuals from the cointegrating relationships. Two different bandwidth 

parameters, m = 25 and m = n0.5 = 41 are considered. Virtually all estimated values are 

strictly below 1. For the first two relationships (stock prices and dividends and their real 

terms) the values for the order of integration in the residuals range between 0.6 and 0.8. 

Smaller values are obtained for the price/earning ratio – long-term interest rate 

relationship: if m = 41, the estimated value of d is about 0.55, however using m = 25, the 
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values are in all cases 0.50 suggesting that the residual series may be stationary. There is 

a wider range of values in the case of the real stock prices – real earnings relationship, 

although most of them are also in the interval (0.5, 1). 

Finally, we identify parametric models for f(λ) with ut in (5) and (6) on the basis 

of equations (17) – (19), using wide-ranging values for the orders of integration from the 

previous tables. Here, we employ both the Robinson and Hualde (2003) and Hualde and 

Robinson (2007) approaches based on the approximate difference between the order of 

integration of the parent series and the estimated residuals. Using a Box-Jenkins-type 

methodology we identified at most AR(1) structures in all cases. Therefore, we simply 

consider combinations of white noises and AR(1) processes in each bivariate relation. 

For each model, we apply the univariate Whittle procedure of Velasco and Robinson 

(2000), using untapered versions, and, as usual, the first-differenced data, then adding 1 

to the estimated value. The results for the four bivariate relationships are summarised in 

Table 10 and they are fairly similar for the different types of I(0) errors. 

[Insert Table 10 about here] 

 Although we do not report it, we also estimated a multivariate version of the 

Bloomfield (1973) model for I(0) autocorrelation, with fairly similar results to those 

presented in Table 10. In general, there is a statistically significant reduction in the order 

of integration in all cases of about 0.3/0.4 from the original series to the cointegrating 

relationship. The orders of integration in the latter are about 0.7 for three of these 

relations: stock prices/dividends; real prices/real dividends, and real prices/real earnings. 
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For the price-earning ratio/interest rates relationship, the reduction is slightly bigger, and 

the order of integration of the cointegrating relationship seems to be slightly above 0.5.5 

 Overall, the four relationships examined in this paper appear to be fractionally 

cointegrated, with orders of integration for the individual series equal or slightly above 1, 

and being in the interval [0.5, 1) for the cointegrating regression, which implies a slow 

mean-reverting behavior in the long run.  

 

4. Conclusions 

In this paper we have examined bivariate relationships among various financial variables 

using fractional integration and cointegration methods. In particular, we focus on the 

following bivariate relationships: stock prices and dividends; real stock prices and real 

dividends; price/earning ratio and long run interest rates, and real stock prices and real 

earnings, monthly, for the time period 1871m1 to 2010m6.  

 The univariate results strongly support the hypothesis that all individual series are 

nonstationary with orders of integration equal to or higher than 1 in practically all cases. 

The multivariate results provide evidence of fractional cointegration for the four bivariate 

relationships with the orders of integration of the cointegrating regressions being in the 

interval [0.5, 1) which implies mean-reverting behaviour. The implication is that there 

exist long-run equilibrium relationships consistent with economic theory and that the 

effects of shocks are temporary, although the fact that fractional cointegration (rather 

than standard cointegration) holds means that the adjustment process is much slower, and 

that therefore the overall costs of deviations from equilibrium are bigger than standard 

cointegration approaches would estimate. This is an important result that should be taken 

                                                           
5 Performing the analysis of the bivariate relationships in the opposite direction leads essentially to the 
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into account when formulating policies and deciding on policy actions. It also provides 

an explanation for the mixed evidence reported in other papers only allowing for integer 

degrees of differentiation and therefore not modelling long-memory properties. However, 

it is important to mention that due to the variety of methods employed, some of them 

parametric and others semiparametric, along with the sensitivity of the results obtained 

with the semiparametric methods to the bandwidth parameters, the results presented in 

this study are not entirely conclusive. This is something one has to face when working 

with fractional models in finite samples due to fact that the differencing parameter has 

real values. 

Other recently developed bivariate or multivariate fractional cointegration testing 

methods based on co-fractional VAR models (e.g. Johansen, 2010; Nielsen, 2010; 

Nielsen and Frederiksen, 2011) could also be applied. Moreover, our analysis does not 

take into account other possible features of the data, such as structural breaks, non-

linearities and other issues. Of course, these are also important issues whose relevance 

for fractional integration tests has already been investigated (see, e.g., Diebold and Inoue, 

2001; Granger and Hyung, 2004; Caporale and Gil-Alana, 2008). Our future research 

will consider them in the context of fractional cointegration. 

                                                                                                                                                                            
same conclusions in all cases. 
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Table 1: Estimates of d in a model with white noise disturbances 

 No Regressors An intercept A linear time trend 

STOCK PRICES 1.169 
(1.134,   1.208) 

1.169 
(1.135,   1.209) 

1.170 
(1.135,   1.209) 

DIVIDENDS 1.906 
(1.874,   1.941) 

1.951 
(1.916,   1.988) 

1.951 
(1.916,   1.988) 

EARNINGS 1.855 
(1.806,   1.910) 

1.856 
(1.806,   1.911) 

1.856 
(1.806,   1.911) 

CONSUMER PRICE 
INDEX 

1.210 
(1.185,   1.241) 

1.396 
(1.350,   1.454) 

1.401 
(1.354,   1.456) 

LONG INTEREST 
RATE 

1.111 
(1.070,   1.157) 

1.111 
(1.070,   1.157) 

1.110 
(1.070,   1.156) 

REAL STOCK 
PRICES 

1.156 
(1.121,   1.195) 

1.161 
(1.126,   1.201) 

1.161 
(1.126,   1.201) 

REAL DIVIDENDS 1.311 
(1.279,   1.346) 

1.505 
(1.470,   1.544) 

1.505 
(1.470,   1.544) 

REAL EARNINGS 1.756 
(1.713,   1.803) 

1.825 
(1.779,   1.877) 

1.825 
(1.779,   1.877) 

PRICE /EARNING 
RATIO 

1.237 
(1.198,   1.282) 

1.494 
(1.449,   1.542) 

1.494 
(1.449,   1.542) 

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using 
Robinson’s (1994a) parametric tests. 
 
 
Table 2: Estimates of d in a model with Bloomfield-type disturbances 

 No Regressors An intercept A linear time trend 

STOCK PRICES 1.052 
(1.000,   1.102) 

1.052 
(1.001,   1.102) 

1.052 
(1.001,   1.103) 

DIVIDENDS 1.033 
(0.987,   1.083) 

1.037 
(0.986,   1.087) 

1.037 
(0.985,   1.088) 

EARNINGS 1.568 
(1.499,   1.649) 

1.569 
(1.492,   1.653) 

1.569 
(1.492,   1.653) 

CONSUMER PRICE 
INDEX 

1.175 
(1.148,   1.206) 

1.187 
(1.160,   1.211) 

1.195 
(1.173,   1.224) 

LONG INTEREST 
RATE 

0.909 
(0.864,   0.964) 

0.908 
(0.863,   0.964) 

0.909 
(0.864,   0.964) 

REAL STOCK 
PRICES 

1.033 
(0.981,   1.083) 

1.037 
(0.991,   1.087) 

1.037 
(0.991,   1.088) 

REAL DIVIDENDS 1.339 
(1.272,   1.419) 

1.448 
(1.388,   1.521) 

1.448 
(1.388,   1.521) 

REAL EARNINGS 1.599 
(1.510,   1.671) 

1.600 
(1.517,   1.681) 

1.600 
(1.517,   1.681) 

PRICE /EARNING 
RATIO 

1.135 
(1.060,   1.231) 

1.269 
(1.171,   1.398) 

1.269 
(1.171,   1.398) 

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using 
Robinson’s (1994a) parametric tests. 
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Table 3: Estimates of d in a model with seasonal AR(1) disturbances 

 No Regressors An intercept A linear time trend 

STOCK PRICES 1.169 
(1.135,   1.208) 

1.170 
(1.135,   1.210) 

1.170 
(1.135,   1.210) 

DIVIDENDS 1.902 
(1.873,   1.935) 

1.953 
(1.921,   1.988) 

1.953 
(1.921,   1.988) 

EARNINGS 1.875 
(1.830,   1.926) 

1.878 
(1.832,   1.928) 

1.878 
(1.833,   1.928) 

CONSUMER PRICE 
INDEX 

1.188 
(1.161,   1.220) 

1.374 
(1.326,   1.431) 

1.378 
(1.332,   1.434) 

LONG INTEREST 
RATE 

1.111 
(1.071,   1.157) 

1.111 
(1.071,   1.157) 

1.110 
(1.071,   1.157) 

REAL STOCK 
PRICES 

1.155 
(1.119,   1.194) 

1.161 
(1.125,   1.201) 

1.161 
(1.125,   1.201) 

REAL DIVIDENDS 1.311 
(1.279,   1.346) 

1.505 
(1.469,   1.544) 

1.505 
(1.469,   1.544) 

REAL EARNINGS 1.742 
(1.704,   1.787) 

1.836 
(1.793,   1.883) 

1.838 
(1.795,   1.885) 

PRICE /EARNING 
RATIO 

1.234 
(1.194,   1.278) 

1.491 
(1.447,   1.539) 

1.491 
(1.447,   1.540) 

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using 
Robinson’s (1994a) parametric tests. 
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Figure 1: Estimates of d based on the semiparametric estimate of Robison (1995a) 
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Figure 1: Estimates of d based on the semiparametric estimate of Robison (1995a) (cont.) 
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The horizontal axis refers to the bandwidth parameter while the vertical one corresponds to the estimated 
values of d. We report the estimates of d along with the 95% confidence band of the I(1) hypothesis. 
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Table 4: Estimates of d using Robinson’s (1995a) semiparametric method for different bandwidth 
numbers 

 25 41 100 200 300 500 

STOCK PRICES 0.850* 0.953* 1.004* 1.121 1.158 1.092 

DIVIDENDS 1.021* 1.105* 1.500 1.500 1.500 1.500 

EARNINGS 0.589 0.580 0.875 1.500 1.500 1.500 

CONSUMER PRICE 
INDEX 

1.500 1.500 1.417 1.228 1.235 1.278 

LONG INTEREST 
RATE 

0.893* 0.895* 0.983* 0.958* 0.990* 1.013* 

REAL STOCK 
PRICES 

0.768 0.888* 1.071* 1.107 1.099 1.086 

REAL DIVIDENDS 0.538 0.896* 1.326 1.455 1.438 1.464 

REAL EARNINGS 0.500 0.500 0.933* 1.500 1.500 1.500 

PRICE /EARNING 
RATIO 

0.500 0.500 0.745 1.041* 1.377 1.431 

95% Confidence 
Interval 

(0.835,   
1.164) 

(0.871,   
1.128) 

(0.917,   
1.082) 

(0.941,   
1.058) 

(0.952,   
1.047) 

(0.963,   
1.036) 

* indicates that the I(1) hypothesis cannot be rejected at the 5% level. 
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Figure 2a: Stock market prices and dividends 
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The thick line refers to the stock market prices and the thin one is for dividends. 
 
Figure 2b: Real stock market prices and real dividends 
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The thick line refers to real stock market prices and the thin one to real dividends. 
 
Figure 2c: Price Earning ratio and long interest rate 
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The thick line refers to the long-term interest rate and the thin one is for the price earning ratio. 
 
Figure 2d: Real stock market prices and real earnings 
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Table 5: Estimates of d using Robinson’s (1995b) log-periodogram semiparametric method for 
different values of l and fixed m = (n)0.5 

m = n0.5 l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 

STOCK PRICES 1.080 1.070 1.061 1.041 1.018 1.017 

DIVIDENDS 1.095 1.048 1.026 1.037 1.134 1.222 

LONG INTEREST 
RATE 

0.956 1.010 0.972 0.914 0.832 0.803 

REAL STOCK 
PRICES 

0.972 1.000 1.085 1.077 1.018 1.016 

REAL DIVIDENDS 0.822 0.851 0.981 0.975 0.996 0.997 

REAL EARNINGS 0.970 1.009 1.073 1.099 1.129 1.162 

REAL EARNINGS 0.279 0.128 0.059 -0.078 -0.142 -0.082 

PRICE /EARNING 
RATIO (*) 

0.913 0.931 0.945 0.920 1.010 1.127 

PRICE /EARNING 
RATIO (**) 

0.484 0.606 0.576 0.589 0.637 0.645 

(*) and (**) indicates that the results are based on the original and first differenced data respectively. 
 
 

Table 6: Testing the homogeneity in the order of integration (Robinson and Yajima, 2002) 
m = n0.5    l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 

Stock prices  /  Dividends -0.145 0.214 0.340 0.038 -1.125 -1.970 

Real stock prices / Real dividens 1.471 1.455 1.009 0.990 0.215 0.185 

P.E.R.  /  Long interest rates -0.425 -0.776 -0.813 -1.617 -1.527 -0.675 

Real stock prices / Real earnings 0.580 0.676 1.356 1.520 0.078 -1.077 

In all cases we employ h(n) chosen as b-5-2i, i=1,2,3,4 and 5. 
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Table 7: Hausman test for no cointegration (Marinucci and Robinson, 2001) 
m = n0.5    H s = 25 s = 41 s = 50 

 

Stock prices  /  Dividends 
 

Has 4.205* 0.239 0.102 

Hbs 2.420 1.260 1.040 

*d̂  0.916 1.088 1.077 

 

Real stock prices / Real dividends 

 

Has 26.499* 11.469* 8.880* 

Hbs 13.520* 2.259 0.810 

*d̂  0.721 0.898 0.936 

 

P.E.R.  /  Long interest rates 

 

Has 24.780* 16.457* 13.209* 

Hbs 28.728* 20.664* 32.262* 

*d̂  0.593 0.721 0.688 

 

Real stock prices / Real earnings 

 

Has 71.520* 68.502* 74.649* 

Hbs 68.679* 64.952* 70.560* 

*d̂  0.487 0.628 0.653 

Χ1
2(5%) = 3.84. * indicates rejection of the null hypothesis of no cointegration at the 5% level. 
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Table 8: Estimates of d on the residuals using the estimate of Robinson (1995b) 
m  =  n0.5 

l  = 0 

Stock prices / 
Dividends 

Real stock prices / 
Real dividends 

P.E.R. / Long 
interest rates 

Real stock prices / 
Real earnings 

 l = 0 l = 2 l = 0 l = 2 l = 0 l = 2 l = 0 l = 2 
υ~  (OLS) 

time domain 
0.775 0.991 1.082 1.273 0.811 0.650 0.723 0.805 

υ~  (OLS) 
freq. domain 

0.633 0.617 0.976 1.127 0.828 0.697 0.526 0.430 

υ~  (NBLS) 
(m = 25) 

1.012 1.260 1.112 1.304 0.837 0.725 1.129 1.283 

υ~  (NBLS) 
(m = 41) 

1.126 1.386 1.132 1.326 0.860 0.781 1.042 1.190 

υ~  (NBLS) 
(m = 100) 

1.083 1.337 1.128 1.322 0.878 0.827 0.600 0.623 

υ~  (NBLS) 
(m = 200) 

0.942 1.186 1.103 1.294 0.855 0.766 0.598 0.620 

υ~  (NBLS) 
(m = 300) 

0.832 1.066 1.087 1.277 0.859 0.777 0.560 0.557 

υ~  (NBLS) 
(m = 400) 

0.754 0.956 1.077 1.269 0.853 0.763 0.551 0.535 

υ~  (NBLS) 
(m = 500) 

0.708 0.853 1.070 1.263 0.846 0.744 0.532 0.486 

 
Table 9: Estimates of d on the residuals using the estimate of Robinson (1995a) 

m  =  25 
Stock prices / 

Dividends 
Real stock prices / 

Real dividends 
P.E.R. / Long 
interest rates 

Real stock prices / 
Real earnings 

m = 25 41 25 41 25 41 25 41 
υ~  (OLS) 

time domain 
0.606 0.778 0.733 0.803 0.500 0.612 0.610 0.715 

υ~  (OLS) 
freq. domain 

0.608 0.781 0.709 0.777 0.500 0.581 0.500 0.500 

υ~  (NBLS) 
(m = 25) 

0.663 0.827 0.741 0.814 0.500 0.567 0.878 1.047 

υ~  (NBLS) 
(m = 41) 

0.683 0.815 0.744 0.819 0.500 0.543 0.843 0.987 

υ~  (NBLS) 
(m = 100) 

0.676 0.811 0.743 0.817 0.500 0.526 0.515 0.623 

υ~  (NBLS) 
(m = 200) 

0.648 0.796 0.739 0.811 0.500 0.549 0.514 0.621 

υ~  (NBLS) 
(m = 300) 

0.622 0.784 0.735 0.805 0.500 0.545 0.500 0.562 

υ~  (NBLS) 
(m = 400) 

0.599 0.775 0.730 0.800 0.500 0.551 0.500 0.521 

υ~  (NBLS) 
(m = 500) 

0.582 0.770 0.726 0.794 0.500 0.559 0.500 0.500 
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Table 10: Estimates of the orders of integration of the individual series  
and of the cointegrating regression 

a) Stock market prices and dividends 

Model υ~  d~  γ~  
u1t is white noise 
u2T is white noise 

52.754 1.161 0.773 

u1t is AR(1) 
u2T is white noise 

48.829 1.166 0.795 

u1t is white noise 
u2T is AR(1) 

48.829 1.188 0.609 

u1t is AR(1) 
u2T is AR(1) 

48.792 1.151 0.631 

b) Real stock market prices and real dividends 

Model υ~  d~  γ~  
u1t is white noise 
u2T is white noise 

52.754 1.161 0.773 

u1t is AR(1) 
u2T is white noise 

48.829 1.166 0.795 

u1t is white noise 
u2T is AR(1) 

48.829 1.188 0.609 

u1t is AR(1) 
u2T is AR(1) 

48.792 1.151 0.631 

c)   Price earning ratio and long interest rate 

Model υ~  d~  γ~  
u1t is white noise 
u2T is white noise 

57.435 1.047 0.780 

u1t is AR(1) 
u1T is white noise 

52.251 1.036 0.763 

u1t is white noise 
u2T is AR(1) 

52.249 0.996 0.526 

u1t is AR(1) 
u2T is AR(1) 

52.208 1.159 0.878 

d)   Real stock market prices and real earning 

Model υ~  d~  γ~  
u1t is white noise 
u2T is white noise 

-1.566 1.165 0.779 

u1t is AR(1) 
u2T is white noise 

0.874 1.053 0.763 

u1t is white noise 
u2T is AR(1) 

0.876 1.115 0.527 

u1t is AR(1) 
u2T is AR(1) 

0.874 1.153 0.877 

 
 

 


