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Defect motion in pattern formation (gliding and climbing, defects annihilation, pinning effects, and
pattern reorientation) is analyzed for the first time when a fluid layer heated from below rotates slowly
around its vertical axis. This system allows for a continuous change from a (approximately) variational
problem (no rotation) to a nonvariational one by increasing the externally applied rotation rate. By a
numerical integration of the 3D-hydrodynamic equations, climbing and gliding velocities of defects are
determined. A mechanism leading to a reorientation of a parallel roll structure is discussed.

PACS numbers: 47.20.-k, 47.11.4j, 47.32.—y

Patterns in spatially extended systems far from equi-
librium usually present a large number of defects. They
appear spontaneously as a consequence of the intrinsic
dynamics or due to sidewall effects, unavoidable in ex-
periments [1]. In this Letter we wish to study Rayleigh-
Bénard (RB) convection under rotation. The interest for
instabilities of this system has received a renewed atten-
tion on the experimental [2—5] as well as on the theoret-
ical field [6—10]. In contrast to previous work we wish
to analyze here pattern formation in slowly rotating flu-
ids well below the Kiippers-Lortz instability (KLI) [11].
It is well known that in this regime perfect patterns of
parallel rolls are stable, but we show that the presence of
defects may lead to qualitative changes in the spatiotem-
poral dynamics of pattern formation even at the onset of
convection.

In RB convection without rotation the pattern is formed
by rolls, and the usual defects are dislocations (point
defect) and grain boundaries (line defect). The texture can
be described by ¥(r) = a(r)cos[k - r + ¢(r)], where ¥
is a convective variable (the vertical velocity or the
temperature), ¢ and ¢ are the slowly varying amplitude
and phase, respectively, and k denotes the wave vector.
At the core of a defect, a vanishes. The circulation
C of V¢ over a closed line including the defect is
equal to 27g, where g is an integer and defined as the
topologic charge of the defect. (Defects with a charge

different from =1 are not observed because they are
unstable.)

Theoretical [12—17] and experimental [18-21] studies
of defect motion in a macroscopic structure show that
the defect usually displaces along the rolls (climbing). In
variational systems this can be explained by the selection
of an “optimal” wavelength due to defect motion and
finds its analogy in the Peach-Kohler force in solid state
physics [13].

When rotation is added to RB convection, the Coriolis
force influences drastically the pattern dynamics [10],
and defects play an important role in the transition
to spatiotemporal complexity. Moreover, the system
loses its variational character even at the threshold of
convection which may lead to inherently time dependent
structures. Numerical studies based on extended Swift-
Hohenberg equations [6—8] gave indications that, even in
the case of a small rotation rate, new effects may appear
as a consequence of the interaction between defects and
the whole pattern.

Evolution equations for the problem can be found in
Ref. [22]. Here we shall restrict our study to fluids with
a large Prandtl number. The usual decomposition of
the velocity field into a poloidal (V X V X [A(r, 1)zo])
and a toroidal (V X [B(r,1)zo]) part leads to the basic
equations for the three coupled scalar functions A, B, and
the temperature ©:

Tad, ArA(r,t) + AAB(r,t) = 0,
A%ALA(r, 1) — Tad, A2B(r,t) — RA,O(r,t) = 0, 1
A)A(r, 1) + (0, — A)O(r,r) = —v(r,t) - VO(r,1),

with Ay = 9, + d,, and A = A, + 9,,. Control parameters are the Rayleigh number R, proportional to the vertically
applied temperature gradient, and the Taylor number Ta = 2Qd?/v, proportional to the angular velocity Q0 of the

fluid layer.

To integrate numerically Eq. (1) under realistic, no-slip boundary conditions on the top and the bottom of the fluid, we
use an algorithm developed earlier by one of us (M. B.) for 3D convection in binary mixtures [23]. That algorithm was
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improved further and applied successfully to convection under Bénard-Marangoni conditions in Ref. [24] where details
of the numerical code can be found. }

Here we wish to test our numerical algorithm first in the case of a fluid layer at rest (Ta = 0), by studying the
experimentally obtained defect dynamics of Ref. [19]. Afterwards we proceed to the case of rotation. We investigate
the evolution of a pair of dislocations created by the initial condition (Fig. 1):

ki for0<y<L,/4, 3L,/4 <y <Ly, )
ko forL,/4 <y <3L,/4, &

O(r,t = 0) = asin(kx)cos(mz), ‘ k = {

where L,,L, is the length and width of the layer and 2.56 mm; vertical thermal diffusion time 7 = 93 s). For

ko — ki = 2w /L,. quantitative comparison with experiments, the velocities
To obtain comparable results with experiments we used found in our numerical simulations are dimensioned with

aspect ratios L, : Ly : A,/2 =38 :21: 1, where A./2 = x/d = 9.84 cm/h.

7 [k, is the diameter of the linearly fastest growing rolls. Along the theory developed for variational systems

As initial values we took k; = kc,ky = (20/19)k. as in  [13], the climbing velocity Vep is Vep « D>"?, where
Ref. [19]. The numerical resolution was 6 mesh points D, is the diffusion coefficient of a phase disturbance
per roll in lateral and 16 points in the vertical direction, perpendicular to the rolls. From Ref. [25] it is known
resulting in a grid of 228 X 126 X 16 points. With a  that D, depends on the Prandtl number Pr as well as on &
symmetric initial condition as (2) defect motion is parallel and thus in lowest order of &
to the roll structure (climbing). Sk 32
We have evaluated the climbing velocity Vi for VoL = 7(— + a(Pr)e + 0(32)> , 3)
different values of ¢ = (R — R.)/R.. After an initial k
transient phase that is roughly proportional to 1/&,VcL  with 6k being the difference between the wave number of
reaches a constant value [Fig. 2(a)], as long as the  the pattern and the critical one and a = 0.015 (Pr = %)
separation of the two defects is large enough that they  or o = 0.046 (Pr = 70). For y we take the value of
can be regarded as being isolated. [We measured the  the literature [12,13,25] y = 53, which is in reasonable
velocity only at certain times during the defect motion,  agreement with the experimental results [Fig. 2(b), solid
namely when the defect crosses a mesh point in the y  [ine] [19]. We found quantitative agreement between
direction. This, and not the numerical inaccuracy, is the  the relation (3) and our numerical simulations [Fig. 2(b),
reason for the discontinuities of the velocities during the  dashed line], at least for smaller £ < 1. We note that
transient phases shown in Fig. 2(a). However, we are not  Egq. (3) is the leading part of an & expansion and therefore
interested in the transients but rather in the final constant  oply valid near the onset.
values of the velocities.] We adopted the parameters of
[19] (silicon oil with kinetic viscosity of 5 ¢St at 25 °C,
thermal diffusivity k = 7 X 107* cm?/s corresponding to , (a) v (b)
a Prandtl number of Pr = 70; depth of the layer d = «

c

1 1 1 1 1 1 | P 1
500 1000 1500 t 1.0 1.5 2.0 25 3.0 3'58
(sec)

] FIG. 2. A comparison between the climbing velocity in
- the experiment of Pocheau et al [19] and our numerical
I 2E SRS EEEER SR ER R ER AR R ER R AT results without rotation (Ta = 0). To obtain dimensionalized
HORIZONTAL PLANE: (z=d/ 2) quantities, we used material properties of [19] (cf. text). (a)
Temporal evolution of climb velocities. They saturate after the
FIG. 1. Initial condition for ® in the horizontal plane at initial phase of pattern formation that is roughly «1/e. (b)

z = d/2 (bottom) and in the vertical plane at y = L, /2 (top). The dependence of V¢ on & can be fitted by the expression
Two defects are created by the inclusion of an extra roll in the Ve = y(6k/k. + ae)®? (see text). Squares: data from [19],
center of the texture. Pr = 70; circles: our results for infinite Pr.
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FIG. 3. Gliding of a pair of oppositely charged defects under

the influence of a Coriolis force (Ta = —10) due to a clockwise
rotation of the layer near threshold of convection (¢ = 0.15).
Dashed lines: contour lines of the phase @, defined as ® =
a sin(kx + ®). Solid lines: zero values of ®. The two defects
are linked by a phase discontinuity of 277 (bold line). View on
the horizontal plane. Here and in the following figures the time
unit is the vertical diffusion time 7.

Now we study the influence of rotation (Ta > 0) on
the initial pattern (2) well below KLI, which occurs for
Takp; = *54.8. Since we expect a gliding of defects
we use a more elongated geometry with aspect ratios L, :
Ly : A;/2 =48 :12 : 1. The rather large extension in the
x direction allows the defects to separate well. Since we
are now interested in smaller £ values we use a somewhat
lower spacial resolution of 192 X 48 X 12 points. After
a short initial transient the defects begin to travel mainly
perpendicular to the rolls (gliding). Rotation favors the
lateral displacement of a dislocation. Defects carrying
opposite charge travel in the opposite lateral direction
with the same velocity Vg (Fig. 3). Near the onset we
found a linear dependence of Vs on & and Ta (Fig. 4)
of VgL * geTa, in accordance with our recent analytical
studies [26].
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FIG. 4. Glide velocity of a defect for Ta = —10. Above a
certain value for &, damping due to pinning effects increases
faster then the driving force and Vi decreases again. For
€ > 0.45, the defect is pinned by a roll and stops. The dashed
line is a polynomial fit and thought of as a guide to the eye.
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As the lateral boundary conditions are periodic, defects
may circulate and interact until they finally annihilate
by collision (Fig. 5). Another interesting feature is also
obvious from this figure: The motion and annihilation
of a pair of oppositely charged defects give rise to an
eventual reorientation of parallel rolls in the sense of
the externally applied rotation (the same behavior can
be seen in the evolution in Fig. 3). Note that this effect
occurs below KLI and is not related with the reorientation
of about 60° found there. This effect has not been
observed yet in experiments, it is completely new. The
experiments of Ref. [S5] were performed for larger Ta =
30, and the transitions reported there are clearly of the
KLI type where pattern dynamics is not mainly mediated
by defects as in our case. Zhong and Ecke argue that the
decrease of the KLI point occurs due to the cylindrical
symmetry and finite size effects of their cell. Our own
numerical computations showed that KLI occurs always
above Takyp if periodic lateral boundary conditions are
applied.

From the theory for variational models a decrease of the
glide mobility is expected for rather large values of & due
to the increase of the potential barrier caused by the small

!

o,

T=45 T=46

FIG. 5. Oppositely charged defects can eventually disappear
by a collision. After the annihilation, a pattern of parallel rolls
with changed orientation remains. Here the external rotation is
counterclockwise. Note that the cell is periodically continued
like a torus and the defects may travel around the cell. (Ta =
22, ¢ = 1.0.) As in Fig. 1, the stripe on the top shows a side
view, whereas the square below gives the horizontal view of
the entire cell at z = d/2.
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FIG. 6. Gliding of roll edges at a grain boundary provides
another mechanism for a global reorientation of convection
rolls. Same view as in Fig. 5. (Ta = 22,& = 1.5.) The external
rotation is counterclockwise.

scale roll structure [27]. The defect tends to be pinned
[28,29]. We found the same behavior: The pinning force
tries to damp the defect motion. For small R, the driving
force created by rotation may overcome the damping and
the defect glides with a velocity that first increases with
R. For larger R, Vi1, decreases again and finally reaches
zero (Fig. 4), the defect is trapped by a roll.

From our numerical studies it turned out that the climb
motion is much slower than the glide motion, at least in
the range of & that was the subject of our studies. Because
of defect separation perpendicular to the rolls caused by
rotation, the wavelengths above and below each defect may
adjust themselves to the same value and the driving force
in the roll direction cancels.

Finally, we wish to study the influence of rotation
on the dynamics of a grain boundary (GB). This was
investigated theoretically [30] and experimentally [31] in
RB convection without rotation. Here we introduce a GB
as an initial condition, just by taking two domains with
perpendicular rolls. When we apply rotation to the cell,
the edge of the rolls begins to glide, eventually leading
to a parallel roll pattern. The first few time steps of that
transient evolution are shown in Fig. 6. In a cylindrical
vessel, a similar gliding velocity of the defects along
the sidewalls is observed. These gliding motions push
the whole pattern to rotate at constant velocity as has
been observed in recent experiments [5] and obtained in
theoretical works [6-9].
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