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We report the results of a Bénard—Marangoni convection experiment. The container has a
square symmetry and a small aspect ratio (i.e. the quotient between a typical horizontal length
and the fluid depth). Based on a few dynamical considerations and the symmetries of the
problem we improve on a previously proposed model, building a new one which successfully
predicts the existence and parameter space location of qualitatively new solutions.

1. Introduction

Pattern formation and spatiotemporal complexity
are the center of attention of a fast growing num-
ber of scientists. Among the most studied systems
stand the convection experiments. The lack of a
qualitative theory of partial differential equations
is in part responsible for a seemingly never-ending
succession of surprises even for “simple” experi-
ments. For example, the Feigenbaum cascade and
other routes to chaos were observed in the convec-
tion of a fluid enclosed in a rectangular container
[Libchaber & Maurer, 1983; Dubois et al., 1983]
(Rayleigh-Bénard problem). In this case, the in-
stability mechanism is provided by buoyancy. A
variant of this problem is the so-called Bénard-
Marangoni problem where the fluid has an open
surface, which provides a new instability mechanism

(surface tension variation with temperature). Re-
cently some attention has been drawn to this in-
stability in small aspect ratio vessels [Rosenblat
et al., 1982; Ondarguhu et al., 1993a]. This system
displays a dynamics by no means trivial, even for
parameter values close to those of the onset of the
convection. To explain such a dynamics consti-
tutes a challenge to the theoretical study because
the small aspect ratio condition enhances the role
played by the boundary conditions, which are al-
ways tricky to deal with. In this work we report
the results on a small aspect ratio convective ex-
periment. The set-up consists of a square container
heated from below with an upper free surface, the
details being provided in Sec. 1. The parameters
of our system (depth of the fluid, temperature) are
such that the system organizes itself into four
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internal convective cells. In some cases the four
cells are quadrilateral, in others two are quadrilat-
eral and two pentagonal. Moreover, in some cases
there is a complicated dynamics that consists in
alternation between those states.

In a previous work [Ondarguhu et al., 1993b]
we reported preliminary results from this experi-
ment. The choice of an appropriate scalar variable
allowed us to register time series data files for dif-
ferent values of the parameters, and a model was
constructed to summarize the results. The two in-
gredients used to build such a model were (a) the
symmetry of the set-up and (b) the observation that
the original convective pattern, which shared the
symmetry of the container, could break into either
a pair of symmetrically conjugated patterns or an
oscillatory one, slightly changing the “route” in pa-
rameter space. This last observation suggested that
the system was operating at parameter values close
to those for which Takens-Bogdanov bifurcation oc-
curred [Guckenheimer & Holmes, 1983; Arrowsmith
& Place, 1990], and therefore provided the struc-
ture of the linear part of our model. Typically,
when more than one mode are going unstable, the
dynamics observed is more complicated than what
one might expect from the superposition of the in-
dividual modes due to the presence of nonlinear-
ities. We introduced in our model nonlinearities
that preserved reflection symmetry and obtained a
dynamics qualitatively similar to the one observed
experimentally. This is reviewed in Sec. 1.

From the theoretical point of view, there was a
puzzling question. The only symmetry introduced
in the model was reflection symmetry, while the
boundary conditions impose a larger symmetry: the
symmetry of a square. Was it possible to construct
a model in which the linear part would reflect the
fact that symmetry breaking phenomena compete
with oscillatory phenomena but are now equivari-
ant under the full symmetry of the system? Would
such a model predict new dynamics? The answer
to both questions was positive. The new model
had actually been studied by Armbruster [1990],
[Armbruster et al., 1989], and moreover for wide
ranges of parameter space the model displays cha-
otic behavior. These theoretical questions lead us
to repeating our experiment, now paying attention
to certain regions of parameter space in which
(according to the theory) chaotic behavior could be
possible. The results of those experiments suggest
that the new theory is more complete than the one

proposed by us before, as the predictions of the
theory have been verified experimentally.

This paper is organized as follows. In Sec. 2
we review our first results [Ondarcuhu et al., 1993b]
and the model constructed from the time series
data. Section 3 contains a discussion on the short-
comings of the model derived in Sec. 2, and a new
model is proposed which includes the previous one
as a particular case, and enables us to predict new
qualitatively different behavior. In Sec. 4 we re-
port new experimental data files from the regions of
parameter space that according to our new model
could show chaos, and comparison with the theory
is performed. Section 5 summarizes our results and
proposes new questions.

2. A First Look at the Data

As we described briefly in the introduction, the
system under study consisted of a fluid (350 ¢St
silicone oil) contained in a square vessel of small
aspect ratio heated from below [Ondarguhu et al.,
1993b]. The actual dimensions are reported in the
caption of Fig. 1. Using a shadowgraph technique
we obtained the images displayed in that figure,
where the red lines correspond to the cold parts
of the pattern, i.e. regions in which the flow is
descending. Figures 1(a)-1(c) display the three
qualitatively different patterns that constitute the
“skeleton” of the dynamics of our system. The first
convective pattern that is observed as the system
is heated from below is shown in Fig. 1(b). The
four cells are quadrilateral, and therefore the pat-
tern and the boundary conditions share the same
symmetry. If the temperature is further increased,
the system bifurcates to either a pattern like the
one presented in Fig. 1(a) or a pattern like the one
presented in Fig. 1(c). The patterns are symmet-
ric conjugates by reflection symmetry. As reported
by Ondarguhu et al. [1993b], when the tempera-
ture is further increased the patterns begin to oscil-
late. The oscillations consist of (seemingly) periodic
modulations of the length of the link between the
square cells [see Figs. 1(a), 1(c)]. For higher values
of the temperature, the system begins to oscillate
in a qualitatively different way, namely an alterna-
tion between a pattern as the one in Fig. 1(a) and
another as the one in Fig. 1(c), passing through the
symmetric pattern 1(b). The order of magnitude of
a typical oscillation time is one minute.

In order to make a quantitative description
of the phenomena, we must construct a relevant
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(2)

(b)

Fig. 1.

False-color shadowgraph images of the convective patterns in a container of aspect ratio I' = 4.46 (size of the cell,

68 x 68 mm?) filled with silicone oil of viscosity 350 cSt. Red lines correspond to minima of the temperature field where the
motion of the fluid is downwards. (b) corresponds to the symmetric pattern appearing at threshold and (a) and (c) to the
asymmetric ones. They are born from the symmetric pattern in a pitchfork bifurcation.

observable quantity (i.e. a number both measurable
and informative). The important features that such
a quantity has to reflect are (a) length of the link
and (b) its inclination (left or right). Let us define

z = d cos(a), (1)

with a € (0, ) as shown in Fig. 2. Notice that
the patterns of Fig. 1 preserve a symmetry, reflec-
tion with respect to the diagonals of the square.
In terms of our model this constrains a to actually

only two values (o = 7/4 or a = 37/4). It is inter-
esting that the first symmetry breaking stationary
bifurcation kept part of the original symmetry. In
the framework of the theory of bifurcations in the
presence of symmetries, this result is not surprising
(see discussion on the equivariant branching lemma
by Golubitsky et al. [1985]).

Our first approach to the analysis was to record
a time series data of the scalar z for each of
the qualitatively different behaviors that we had
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Fig. 3.
symmetric pattern.

Reconstructed phase space (z, z') for different time series data. (a) displays a fixed point corresponding to the
(b) shows the fixed points associated with the asymmetric patterns.

(c) displays a limit cycle (an

asymmetric oscillation) and (d) a limit cycle corresponding to the symmetric oscillation.

identified. Is it possible to construct a dynamical
model for our system directly from the time series
data? We began by embedding the data in the
(z, z') space (where z’ stands for the time deriva-
tive of z). Notice Fig. 3 shows that is a good em-
bedding (in the sense that no self intersections of
the flow are observed within the experimental pre-
cision), and therefore one can attempt to write a
system of equations to model the dynamics using
these variables. Such a system reads as follows,

o=y, (2)

v = f(z,9). (3)

This system can be equivariant under reflection
symmetry broken in the first stationary bifurcation
(r — —zx) provided that f(z, y) is properly cho-
sen. According to Eq. (2), the action of the reflec-
tion on the variable y has to be y — —y; therefore
the equivariance of the system will be guaranteed if
f(z, y) = —=f(—z, —y). Performing a Taylor expan-
sion around (z, ') = (0, 0) [the mathematical rep-
resentation of the stationary pattern of Fig. 1(b)],
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Fig. 4.

it is possible to write

f(z, y) =z +pey+a1z3 +acz’y+aszy’ +agy’.
(4)

We still will have some information extracted from
the experiment to “prune” this model. If Hopf and
symmetry breaking bifurcations occurred closely in
parameter space, the Jacobian of the model

(i )

M1 p2

has to have two eigenvalues close to zero, i.e. u;
and p» are themselves close to zero. Perturbations
of the singular case (u; = o = 0) were studied by
Takens and Bogdanov [Guckenheimer & Holmes,
1983], who reported that interesting dynamics such
as periodic and homoclinic orbits can occur. More-
over a normal form reduction shows that the study

of the whole family of vector fields can be reduced
to a study of only two systems, namely

=y, (5)
Y =z + poy F 23 + 2%y (6)

The solutions of this system for the case with
minus sign are displayed in Fig. 4. Notice the
qualitative agreement between the experimentally
obtained phase space portraits (Fig. 3) and the
theoretical ones.

This theoretical approach is in some sense
“nonconventional.” Typically one begins with the
Navier-Stokes equations and tries to identify a
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Unfolding of the Z; equivariant Takens-Bogdanov bifurcation.

small number of modes which are active for real-
istic parameter values by means, for example, of
a Galerkin expansion. Then, after truncation at
some order in the nonlinearities, one proposes a
finite-dimensional dynamical system which pro-
vides, through numerical simulations, theoretical
solutions to be compared with the experimental
ones. In our approach, the starting point was dy-
namical observation (symmetry breaking bifurca-
tions competing with Hopf bifurcations) plus ge-
ometrical consideration (the boundary conditions
having square symmetry).

3. A Puzzling Theoretical Aspect

There is a puzzling element in the theoretical anal-
ysis performed in the previous section. The only
symmetry that was used in the construction of the
model was a reflection symmetry with respect to an
axis perpendicular to two of the sides (X3 in Fig. 2),
while symmetries of the square are generated not
only by the reflection with respect to that axis but
also by reflection with respect to one of the diago-
nals of the square. In principle there is no reason
to worry. It is true that a model both equivariant
under Dy (symmetries of the square) and with a
linear part compatible with the collision between
a Hopf and a pitchfork bifurcation will require a
larger phase space. But it is also true that the Dy
symmetry will force the existence of subspaces in-
variant under its subgroups (as we will show later).
In other words, the fact that only a subgroup of
the symmetry was used so far leaves open the
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possibility that a more general model (now equivari-
ant under the action of the full group) could predict
new dynamical behaviors for unexplored regions of
the parameter space. In this section we explore that
possibility.

In order to build a system that is both equiv-
ariant under the D4 group and has a linear part
reflecting the collision between Hopf and symmetry
breaking bifurcations, one has to enlarge the phase
space. Armbruster [1989, 1990] addressed this prob-
lem. He studied vector fields that are equivariant
with respect to D4 acting on R* and have a linear
part
01 00
0 0 0 0
0 0 01
0 00 O

The most general vector field with this linear
part and equivariant under D4 has been shown to
be, up to cubic order, reducible to the following
normal form:

o' =y+edfa(zy—wzx), (7)
Y = pr+z(a(x?+22) +b2?) +e(vy+y(c(z® +22)
+ezl+de(zy+2w))) +e fw(zy—wz),  (8)
Z=w—-e?fr(zy—wr), (9)
w' = pz+z(a(x® +2%)+bx?) + e (vwtw(c(xz? +22)
+ex?+dz(zy+zw)))—e* fy(zy—wz),
(10)

where the Dy group is generated in this representa-
tion by the two reflections

(11)
(12)

T(x’ y’ z’ w) = (z’ w7 x? y))

p(.’L’, Y, 2, w) = (“.’L', -Y, 2, w) .

Notice that the D4 symmetry forces the exis-
tence of two-dimensional invariant subspaces given
byxr=y=0,z=w=0and z = +z, y = w.
Within these subspaces, the system is equivalent
to a Z(2) (reflection) equivariant Takens—Bogdanov
bifurcation problem, exactly as the one we proposed
in the previous section.

So far, our new dynamical model is mathemat-
ically more appropriate than that proposed in the
previous section, and contains it as a subcase (the
dynamics being restricted to a Zy invariant sub-
space). But the real challenge for this model is the
following; can it predict new solutions? There is

an even more challenging question. We did not ar-
rive at the conclusion that this model was neces-
sary from a study of the Navier-Stokes equations
with realistic parameters, but from purely dynam-
ical considerations. Can we somehow predict in
which regions of our parameter space the new so-
lutions could be found? In order to answer these
questions we will explore the dynamics of our new
model. To a large extent, this will be a review of
some of the work reported by Armbruster [1990].
A systematic study of Eqs. (7)—(10) is beyond the
scope of this paper, as there are nine parameters
to take into account. Despite this difficulty, we
have the preliminary experimental results reported
in Sec. 2 as a guide; our new model might predict
new dynamics, but it must fit what we already ob-
served. That will help us “prune” the parameter
space.

In Armbruster [1990] some features of the
solutions of Egs. (7)—(10) were described. It is nat-
ural to expect a large variety of solutions. But let
us concentrate our description of the system to pa-
rameter values close to those in which the dynam-
ics is constrained to a reflection invariant subspace.
We will follow Armbruster [1990] closely. As we
have already pointed out, the dynamics in such sub-
spaces is equivalent to one corresponding to a Z(2)
equivariant Takens-Bogdanov problem. It is well
known that for such a problem a homoclinic bifur-
cation takes place where two symmetrically conju-
gated limit cycles coalesce into one symmetric limit
cycle (see Fig. 4). But these homoclinic orbits are
unstable in the four dimensional model as the ori-
gin is a saddle. Therefore, at least for a region of
the parameters close to those in which the dynam-
ics in the invariant subspaces is an homoclinic so-
lution, the system will explore a wider region of
the phase space, which will generically be chaotic.
The conclusion is that even if we choose parame-
ters such that the dynamics is largely restricted to
a Z(2) subspace (as we need in order to explain
the results described in Sec. 2), we should find an
edge of parameters for which the dynamics can be
chaotic. In Fig. 5 we show numerical integrations
of Egs. (7)-(10). The parameters were chosen so
that the dynamics would be largely the dynamics
of a Z(2) Takens-Bogdanov problem. Notice the
¢complexification of the periodic solution as we ap-
proach the saddle in Fig. 5(d). If the parameter
po is further increased, two symmetric conjugate
strange attractors collide in a crisis, after which a
symmetric chaotic solution emerges.
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The structure of the chaotic solutions of system
(7)-(10) itself deserves a detailed study. Several
inner crisis that enlarge the antisymmetric strange
attractors occur as the parameters are varied. In
Fig. 6(a) we display a segment of time series of the

HZAr

variable z. Notice the alternation between period
four looking segments with segments in which the
dynamics consists of modulated oscillations. That
time series was taken after a crisis between a
period doubling strange attractor and an unstable

Hy

bR e ge:

Fig. 5. Unfolding of the D4 equivariant Takens-Bogdanov bifurcation [Egs. (7)—(10) in the text] for parameter values chosen
so that many features of the Z; equivariant problem are present (i.e. the dynamics is for wide regions with the unfolding
parameters restricted to a Z, invariant subspace). For the simulations reported in this figure we used o = -1, b=1.1, ¢ = 1.5,

d=—-05e=—-15, f=0.

125 2
100 _ j
w75 ]
i ]
500 _
25 ]
L j

|l i 1 [ I J I 1 | L4 L | Lo L1 1 |

5000. 10000. 15000.
i
(a)

L B R A R
125 | _]
100 | n

7.5 L ]

i ]
50 _ ]
25 _]

C R N | K Joodo ) ) ‘ ] I I oA 11 ‘ jal 11 l 1 L T W T

2500. 5000. 7500. 10000. 12500.
i
(b)

Fig. 6. Three times series data segments of the solutions of Egs. (7)-(10) in the text for the values of a, b, ¢, d, e, f reported
in the caption of Fig. 5. uz = —1 and g1 = 0.88 (a), u1 = 0.91 (b) and p1 = 0.93 (c). (a) displays a segment of the =
component of an asymmetric chaotic solution in which period-4 looking segments alternate with oscillations. In (b), a segment
is shown in which modulated oscillations are dominant. (c) displays a segment of a symmetric strange attractor.
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Fig. 6. (Continued)

orbit. Figure 6(b) presents a time series segment
in which modulated oscillations are dominant.
Figure 6(c) shows a segment of time series data
of a set-symmetric strange attractor which arises
after two symmetrically conjugated strange attrac-
tors collide.

These theoretical considerations suggested the
possibility of new and richer dynamics in regions
of parameter space that we had previously disre-
garded. According to the numerical simulations of
the model, Eqs. (6) and (7), it is possible to find
chaotic solutions. That would occur between the
temperatures for which symmetric oscillations exist
and the ones for which the solutions are antisym-
metric oscillations. In the following section our new
experimental findings are reported.

4. A Closer Look at the Data

According to the theoretical considerations dis-
cussed in the previous section, there were hints that
new dynamics could occur in regions of the param-
eter space which we had over-looked [Ondarguhu
et al., 1993b]. In this section we will report data
from new observations, and analyze the time series
data in order to identify the nature of the dynamics
encountered.

The theory of dynamical systems provides
many new tools for analysis of time series data.

Some of these are merely theoretical games in the
sense that they disregard the experimental fact that
no matter how skillfully the experiment is run or
recorded, there is always noise. Somewhere between
the inspiring comments of Poincaré as to the neces-
sity to look for qualitative behavior and the new
sophisticated tests for chaotic data reported in the
last years, that fact seems to have been overlooked
many times. Our approach to the analysis of these
time series data files is topological in nature. We
will look for the presence of determinism by trying
to identify unstable periodic orbits embedded in the
data, and we will compare some qualitative features
of these with those expected from theory.

As we have done before, we register the
time series data of the scalar x (defined in Sec. 2).
This time, we took more points for each “typical
oscillation”. This was done automatically using im-
age processing techniques [Ekstrom, 1984] which al-
lowed us to sample two measurements per second
(more than one hundred points per typical oscilla-
tion). The method used to identify the link between
the two square cells accumulates an error of approx-
imately two pixels (while the typical amplitude of
the oscillation is of the order of 30 pixels). A plot of
a segment of x versus ¢ is shown in Fig. 7, along with
a smoothed time series obtained after applying a
simple high frequency filtering process.
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Fig. 7. Top: Experimental time series segment of the x vari-
able. The units of z are pixels (one pixel corresponds to
0.25 mm) and the units of the time are 75 sec. Bottom: (i)
versus 1 after smoothing, where ¢ stands for the position of
z in the data file. The aspect ratio was I' = 4.49 and the
temperature was T = 60.1C.

The time series data shown in Fig. 7 presents
a feature common in many of the data files. First,
it is clear that there is a dynamics more compli-
cated than simple oscillations. Also noticeable is
the alternation between modulated oscillations and
a qualitatively different regime. In general it is
a delicate issue to state that a complicated data
set obtained experimentally is chaotic. A strong
topological signature is the presence of segments of
the data files that behave almost as periodic orbits.
That is due to the fact that embedded in a strange
attractor there are unstable periodic orbits. There-
fore, if a point in the attractor is near an unstable
periodic orbit with relatively low positive eigenval-
ues, it can evolve in the neighborhood of that orbit
and return to an epsilon neighborhood of the start-
ing point. Clearly this will not be the case if the
periodicity of the unstable orbit is not low enough.
From now on, we will measure periods in units of
the period associated to the dominant frequency
in the data (which we have been denoting as the
“typical oscillation time”).

This method of detection of unstable periodic
orbits has been implemented in Tufillaro et al
[1990], Mindlin & Gilmore [1992] and Mindlin
et al. [1991]. Selecting pieces of the data file such
that (x(i) — z(i + p)) < e for at least p points
(the solution staying close to an orbit for at least
twice its period), we obtained candidates for un-
stable periodic orbits constituting the skeleton of
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Fig. 8. Segments of the data file that provide evidence of
the presence of unstable periodic orbits. (a) shows a good
approximation of a period-4 segment, and (b) a time delay
embedding (z(z), (i +15)) of the same segment. The aspect
ratio was I' = 4.49 and the temperature was T = 62.6C.

the solution. Figure 8(a) shows a period-4 seg-
ment and a two-dimensional time delay embedding.
Notice that it is hard to identify the fact that a seg-
ment is not a periodic orbit. Figure 9(a) displays a
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Fig. 9. (a)shows a time delay embedding (z(z), (¢+15)) for a complicated experimental solution. (b) shows segments of the
same file which are good approximations of period-1 unstable orbits (top, middle) and period-2 orbits (bottom). The aspect
ratio was I' = 4.49 and the temperature was T = 63.5C.
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time delay embedding of a complicated experimen-
tal solution. In Fig. 9(b) we show segments of the
same file which are good approximations of orbits
of periods 1 and 2. The topological features of
these solutions might help us to understand the
mechanism involved in the creation of this compli-

cated solution as parameters were changed [Mindlin
et al., 1990]. Notice that the two period-1 orbits
do not link each other, while the period-2 orbit
links one of the period-1 orbit once. This is com-
patible with a horseshoe mechanism of stretching
and folding the phase space. According to this
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Fig. 10. (a)[(b)] shows a time series segment which presents an approximation of a period-2 (4) repeated twice followed by

a modulated oscillation. In (c) alternations between subharmonic structures and modulations can be seen. The aspect ratio
was I' = 4.49 and the temperatures were T = 63.5C (a), T = 62.6C (b), T = 60.1C (c).
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observation, the period-4 should be knotted as a
torus knot T{y3), and perform a three-dimensional
phase space embedding of the reconstructed period-
4 unstable orbits, which is the case [Mindlin et al.,
1991]. It is worthwhile to remark that horseshoe-
like behavior is present in the theoretical model as
well.

Another typical feature of the complex solu-
tions that we observed is the alternation between
segments that present a subharmonic structure (seg-
ments that look like period-4, 2, etc) with segments
that look quasiperiodic. The segments shown in
Fig. 10 illustrate that point. In Fig. 10(a) [10(b)]
we can see an approximation of a period-2 (4) that
is repeated twice, followed by a modulated oscilla-
tion. Larger time series data presenting the alter-
nation between modulations and subharmonic-like
structures are displayed in Fig. 10(c).

If the temperature is increased further, we
observe a dynamics that consists of sporadic al-
ternations between positive and negative irregular
oscillations. Figure 11 displays one of such data
files. In terms of our theoretical model, this corre-
sponds to a symmetric chaotic solution that emerges
after a crisis in which two symmetrically conjugated
strange attractors collide. As the temperature is
increased, the time spent in each of the antisymme-
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Fig. 11. A time series segment corresponding to a chaotic

set-symmetric oscillation. The aspect ratio was I'=4.49 and
the temperature was T = 67.3C.

tric subregimes is smaller, and the system performs
more and more regular symmetric oscillations.
The results previously described . allow us to
build some evidence in favor of the model described
in Sec. 2. The theory predicts an edge of parame-
ters for which the system would behave chaotically
and irregular behavior was found. This irregular
behavior showed clear signatures of determinism (as
the presence of long segments that approximate
periodic solutions) and some features present in the
numerical simulations as modulations alternating
with subharmonic-like segments. Also in the the-

. ory a crisis gives rise to a symmetric strange at-

tractor as the parameter y; is increased, which is
experimentally found to be the case when the tem-
perature is increased (we have already pointed out
that agreement between our first model and the
experiment required identification between p; and
a growing function of the temperature [Ondarguhu
et al., 1993b]).

5. Conclusions

We report a simple experiment (a free upper surface
Bénard system) in which the boundary conditions
imposed a square symmetry. The solutions show a
symmetry breaking process followed by the appear-
ance of oscillations. We show that these simple ob-
servations allow us to build a theoretical dynamical
model which reflects many of the features present
in the experiment.

A conventional approach to the theoretical
study of these phenomena consists in reducing the
Navier-Stokes equations to a finite-dimensional dy-
namical system. This procedure is in general cum-
bersome. Our approach is dynamical in nature;
from a scalar time series data and symmetry con-
siderations we build a model. A major contribution
to the understanding of our experiment came from
the theory of equivariant vector fields, which sug-
gested that a four-dimensional model (not a two-
dimensional one as proposed by us in a previous
paper) should be considered. That new model pre-
dicted the existence of a region of the parameter
space in which the dynamics should be chaotic, and
new observations corroborated the predictions of
the theory.

Small aspect ratio systems constitute a chal-
lenge to theoreticians. To deal with boundary
conditions in extended nonlinear systems is by
no means trivial, but we hope this work will
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encourage further studies as it shows that even this
simple experiment displays a rich variety of complex
solutions.
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