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We present experimental and numerical results regarding the stability of arches against external
vibrations. Two-dimensional strings of mutually stabilizing grains are geometrically analyzed and
subsequently submitted to a periodic forcing at fixed frequency and increasing amplitude. The main
factor that determines the granular arch resistance against vibrations is the maximum angle among those
formed between any particle of the arch and its two neighbors: the higher the maximum angle is, the easier
it is to break the arch. On the basis of an analysis of the forces, a simple explanation is given for this
dependence. From this, interesting information can be extracted about the expected magnitudes of normal
forces and friction coefficients of the particles composing the arches.
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Arch formation is a common feature whenever large
assemblies of solids move collectively. Force chains that
propagate along a string of particles are able to stop the
movement, in such a way that the ensemble can resist an
external pressure as a solid does. Arches, defined as ar-
rangements of mutually stabilizing sets of particles capable
of withstanding external loads [1,2], are the key ingredient
for attaining a solidlike structure. The likeness of this can
happen, for instance, in traffic jams [3,4], avalanches of
crowds in panic [5], and colloidal systems [6]. The notion
that a common description can be given for all those
various systems was put forward by Cates et al. [7], who
called them fragile matter. They pointed out that arches
can be shattered by the exertion of incompatible stresses,
meaning forces that act in directions different from that of
the load supported by the arches.

A collection of a large amount of grains is a good
example of such a situation, amenable to laboratory study.
When a dense flow of grains moves through an orifice, they
are prone to clog due to the formation of an arch that blocks
the exit [8—12]. The properties of these arches have been
characterized in previous works [13,14], and the main
findings can be summarized in two points. (1) Large arches
tend to be semicircular in average; i.e., their span is twice
their height. This implies that there exists a direct relation-
ship between all the geometrical features (such as the
number of beads, the span, and so on). (2) There are a
considerable number of particles that are suspended from
above the equator, stabilized by frictional forces. Con-
cerning this point, in Ref. [14] the angle associated to
each grain, ¢, was defined as the one subtended by the
two segments connecting the center of the sphere with the
centers of its two neighbors (see Fig. 1). It was reported
that 17% of the spheres hang from above the equator
(¢ > 180°) and were called defects. Of course, only fric-
tion can stabilize a grain in this way.
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The clogging of silos due to arch formation is often
avoided in practical situations, such as industrial silos, by
means of vibrations [15-18]. The vibration is likely to
impose incompatible stresses on the arch and to break it.
In this Letter, we take a closer look into this procedure and
address the question of whether there exists a relationship
between the geometric characteristics of the arches and
the external vibrations needed to break them. This can
obviously lead to an improved efficiency in the above-
mentioned industrial processes and also to a better under-
standing of the main ingredients affecting the stability of
arches. These results could also be related with several
situations, such as compaction dynamics, where the role of
arches is crucial [19,20]. For the moment, in this first
approach, we have focused on the force needed to break

FIG. 1 (color online). Sketch of the experimental setup. Key:
C, video camera; A, accelerometer; V, electromagnetic shaker;
M, motor; S, silo. On the left, a photograph of an arch is
presented, indicating the angle ¢ for one bead. We also show
a diagram of a horizontal defect as considered in the text. Forces
for the right side of the bead are represented with dashed vectors,
from left to right: weight, normal force, and friction.
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an arch by increasing the amplitude of the vibration, at a
constant frequency.

We have set up an experimental device consisting of a
two-dimensional symmetrical silo placed on top of a mag-
netic shaker (Fig. 1). The silo is made of two sheets of
transparent polycarbonate (390 mm high X80 mm wide)
lined with a conductive coating to avoid electrostatic
charges. The gap between the two sheets is 1.2 mm, and
we filled it with nonmagnetic stainless-steel beads of 1 mm
diameter (in some runs we used brass beads of the same
size). The fact that the monolayer is not exactly arranged in
a two-dimensional disposition does not have a significant
effect on the results, as we will show below. At the middle
of the silo there is a horizontal partition with an orifice of
4.45 mm, dividing the container into two equal compart-
ments. An electric motor can rotate the silo around the
horizontal axis, through a junction allowing free vertical
motion of the container. Additionally, a standard video
camera continuously records the region of the outlet. A
computer controls all the components with the following
protocol. Starting from a situation where all the beads are
in the bottom compartment, the silo is rotated half a turn
around the horizontal axis, so that the beads start to fall
through the orifice. The eventual formation of an arch that
stops the flow is automatically detected by image analysis,
and a photograph of the arch is taken and stored. Then, a
sinusoidal vibration of 1 kHz frequency is switched on, and
an amplitude ramp of approximately 0.09g/s (g is the
acceleration of gravity) is applied to the silo. This fre-
quency was chosen because it is an order of magnitude
greater than the characteristic time that it takes for a bead
to fall its own diameter from rest under the action of
gravity. The amplitude ramp rate is such that we are in a
fast regime: a ramp twice as fast does not produce any
substantial variation (Supplemental Material [21]). On the
other hand, with a much slower rate, creeping motion could
appear. Typical amplitudes are below the micron range,
which is about the size of the asperities of the beads. The
breaking of the arch is detected from the video signal, at
which moment the maximum acceleration of the sinusoidal
forcing I' (in units of g) is obtained. We have checked that
the residual transversal acceleration is always well below
10% of the vertical acceleration. The vibration is kept until
all the beads are in the bottom half of the silo, and the
procedure restarts.

The photographs of the arches (Fig. 1) can be analyzed
to obtain ¢ (the angle associated to each bead). The two
beads at the end of the arch do not have an associated angle
and, indeed, are not considered to belong to the arch. From
the particle positions, one can also obtain the geometrical
features of the arch (height, span, number of beads, and so
on). Our first aim, then, was to try to establish a relation-
ship between the shape of the arches (or any other geomet-
rical characteristic) and the force needed to break them, to
ascertain whether or not some varieties of arches withstand

the external vibration better than others. Our experiment is
tailored to this aim because it provides both the accelera-
tion at the breaking point and a photograph of the arch.
The first noticeable result is that the acceleration needed
to break an arch, I', decreases with ¢,,,,, Which is the
maximum angle found among the beads belonging to a
given arch (Fig. 2). To further substantiate the claim that
the grain with ¢, is the weakest link in the arch and that
it sets the value of I that the arch can withstand, we have
inspected 200 high-speed recordings of the breaking pro-
cess (from the arch formation to the arch breaking). We
have observed that 64% of the arches break at the bead
with maximum angle, 12% break at a bead touching the
one with ¢ ..., another 12% break at the border (where the
value of ¢ cannot be defined), and the rest break else-
where. More significantly, we observe that if an arch has a
defect (¢ > 180°), in 95% of the cases it breaks just there
(Supplemental Material [21]). It is therefore quite natural
that as the arch breaks at the weakest link, i.e., the grain
with the largest ¢ value, then the value of I depends on
dmax for each arch. Additional evidence that I" depends
just on ¢, can be gained by repeating the experiment
with another orifice size (Supplemental Material [21]).
Once the dependence of I" on the maximum angle found
in the arch has been revealed, one can examine whether I'
also depends on other properties of the arch (span, number
of beads, etc.). Recall that all the geometrical features of
the arches are directly related among them. Therefore, we
can focus on one of them, for instance, the number of beads
7 (excluding, as remarked above, the two end grains). In
Fig. 3(a), we plot I" vs 7 for steel beads. Clearly, the more
beads in the arch, the easier it is to break it. But this is just
because as 7 increases, the more likely it is that a larger ¢
appears. To illustrate this, we have calculated the order
statistics of ¢, i.e., the expected value for the maxi-
mum of ¢ among a set of size 7, as calculated from the
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FIG. 2. Average maximum acceleration I' imposed by the
external vibration at the instant of arch breaking, as a function
of ¢ max, the maximum angle in the arch. Triangles correspond to
steel beads, and circles correspond to brass beads. Error bars
show 95% confidence intervals.
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FIG. 3 (color online). (a) Value of I" vs the number of beads in
the arch obtained experimentally (uptriangle), and using the
order statistics as explained in the text (square). (b) Average
value of ¢, obtained experimentally for arches with different
number of beads 7 (uptriangle). Expected value of ¢, (square)
calculated from the PDF of ¢, as a function of the sample size
(the number of beads 7). (c) I" vs i for small intervals of ¢ -
Key: uptriangle, [173°,175°]; circle, [179°,181°]; diamond,
[187°,189°]; square, [191°,193°]; downtriangle, [195°,197°].
Dashed lines correspond to the means of the intervals. Data in
this figure correspond to steel beads.

probability distribution function (PDF) of ¢ [Fig. 4(b)
inset]. These values are plotted along with the measured
ones [see Fig. 3(b)]. As one can see, the agreement is good,
meaning that the factor by which ¢, grows as beads are
added to the arch can be understood just in statistical terms.

This implies that the angles of the arch are a random
sample of the PDF of ¢. If the expected value of ¢, is
used to estimate the average acceleration needed for break-
ing the arch (from Fig. 2), one obtains a prediction of I" as a
function of 7 that agrees quite well with the experimental
results [Fig. 3(a)]. Besides, one can select the arches within
a small interval of ¢,,,, (although this drastically reduces
the number of samples considered) and see whether I’
depends on 7 in this subsample. It is hard to ascertain
any dependence, as can be seen in Fig. 3(c). Hence, we can
conclude that I' depends on the geometrical features of the
arch only to the extent that these variables enhance or
reduce the probability of finding a larger ¢ .-

In what follows, we perform an analysis of the forces on
one bead that can explain the dependence of I" on ¢, for
the case of defects. Let us consider a bead hanging from
above the equator from two neighbors in a horizontal,
symmetric arrangement (see Fig. 1). Certainly this is not
always the case, and therefore this explanation can only be
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FIG. 4 (color online). (a) I' as a function of 6 (same data as
that in Fig. 2; triangles correspond to steel, and circles to brass)
along with least-squares fits (dashed lines). (b) Results from
numerical simulations displaying the probability of finding
beads with small upward forces (i.e., less than 10 mg) both in
2D and 3D as a function of ¢,c. Inset: The upward vertical
force as a function of ¢,,,c. (c) Histogram for the angles ¢ of
steel beads (uptriangle) and brass (circle), in logarithmic scale.
The dotted vertical line corresponds to ¢. = 190° (steel) and the
dashed vertical line to ¢, = 192° (brass). In the inset, the whole
histogram is shown in linear scale.

deemed as approximate. Considering the beads depicted in
Fig. 1, the normal force N can be shown to be almost equal
(in first approximation) at both sides of the bead, and we
can work out the force balance for half a bead when the
arch breaks. At this moment, the friction is mobilized and
there is an external force due to the vibration F = mlg,
where m is the mass of one bead. Let us define 6 =
(¢p — 7)/2 (see Fig. 1). Therefore,
mg mlg

uN cos(6) = N sin(6) + ER + — (1)
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where u is the friction coefficient. Assuming that 6 is
small, which in fact it is, we can write
F%—Z—Nﬁ—i-z—N,u—l. (2)
mg mg
From this simple model we can infer that there should be
a linear relationship between I' and 0 (or ¢,,,,, because it
depends linearly on 8). In Fig. 4(a), we show that this linear
relationship is fulfilled. From these data, corresponding to
two different materials, we obtain N = 6.1 = 0.5 mg and
pm =026 = 0.08 for steel and N =4.1 £0.5 mg and
= 0.35 = 0.08 for brass. Unfortunately, it is not easy
to accurately provide the value of the static friction coef-
ficient of the materials used: values given usually vary
grossly depending on surface condition, lubrication, parti-
cle shape or sphericity, temperature, and so on (as we have
observed in this experiment). Widely used values [22] are
compatible with the obtained ones. In any case, the relevant
fact is that the proposed argument reproduces the depen-
dence of I" on ¢ and yields reasonable values for .
Even more important than the values of the friction
coefficients is the prediction that the normal force in a
defect should be just about a few times the weight of one
bead. One could expect that the forces acting on particles at
the bottom of a silo, even taking into account the Janssen
effect, should be much bigger than this [23]. Hence, our
result suggests that individual particles forming a defect
are submitted to normal forces smaller than the average.
In order to analyze this issue and check whether it is
caused by the quasi-2D geometry of the experiment, we
performed numerical simulations of arch formation in 2D
and quasi-2D geometries. We examined soft spheres of
diameter d and friction coefficient w, = 0.4, within a
container that has a hole of width 4d. In quasi-2D geome-
try, the spheres are confined between two walls 1.2d apart
in the out-of-plane direction. Newton’s equations of mo-
tion were solved following standard methods [24]. In
Fig. 4(b), we plot the probability of finding a particle
with an upward vertical force F™ smaller than 10 mg. In
both cases, the results are very similar and agree with the
prediction of the model: angles above 180° display notably
higher probabilities to find small F* values (see also the
inset). This result could be related with the existence of two
force subnetworks [25,26], an issue that will be investi-
gated elsewhere. Moreover, in quasi-2D geometry, we
found that the interparticle forces within arches are notably
higher than those acting on the walls (four times on aver-
age). Thus, we can confidently state that the quasi-2D
geometry does not significantly alter the phenomenon.
Finally, if we set I' = 0 in Eq. (2), we obtain

mg
=7+ 2u—
¢C T /"l’ N ’ (3)

which gives ¢, = 192° for brass and ¢. = 190° for steel.
These angles correspond to the stability threshold in the
limit of infinitesimal vibrations. In Fig. 4(b), the right side

of the ¢ PDF is presented. A clear cutoff is obtained
around the predicted values setting I' = 0 in Eq. (2). This
reinforces the validity of the explanation offered.

We have presented experimental evidence showing that
arches break at the weakest link, which is the bead in the
arch that clings to its neighbors with the highest angle.
Indeed, the value of this maximum angle in the arch is the
best predictor for the force needed to break it when sub-
mitted to an external vibration. We provided a simple
argument to show that a direct relationship is expected
between the acceleration I' and the maximum angle
@ max» in the case ¢, > 180°. These results open an array
of various questions, such as the study of the influence
of the vibration frequency on the arch stability or the
expected smaller time lapse that a big defect would endure
before the arch breaks. Besides, very hard arches should be
obtained when defects are absent.

If a fully three-dimensional situation is considered in
which the beads are not disposed in a monolayer, one can
only guess that the results presented here can provide a
good starting point. The riddle will be how to define the
arches and the angle associated to each particle. Only
then it will be possible to check whether the relationship
between I and that angle is similar to the present case.
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