Novel Findings in Genomics and Metabolomics in the ARIC study

Eric Boerwinkle Boston, MA May, 2017

The University of Texas Health Science Center at Houston

Goals of Genetic Studies (of the Metabolome)

- Genes being novel predictors of disease
- Predictors vs Biomarkers and the principal of Mendelian Randomization
- Biology of the human metabolome
- Drug Target Discovery
- Gene x Environment Interaction

Maximizing Opportunity for Discovery ↑ Power, while controlling costs

Multi-Omics Integration

Life Science data: Multi-omics, multi-technology, multi organism, multi dimensional

Achieving this vision, requires delivering large amounts of high quality data to the community in a timely manner.

The Atherosclerosis Risk in Communities (ARIC) **Study**

Visit 1

1987-89

Prediction of Incident Disease

1993-95

5

2019

2011-13

Metabolomics in the ARIC study

Why Multi-Ethnic Studies?

- Differences in Environment
- Differences in site frequency spectrum
- G x E
- Epidemiology of Disease

85.6 Million American Adults Have Heart Disease

Current Use (Not Binge)
Binge Use (Not Heavy)
Heavy Alcohol Use
Note: Due to low precision, estimates for Native Hawaiians or Other Pacific Islanders are not shown.

Advances in Genomics & Metabolome

Advances in Genomics & Metabolome

Genomics			
	Candidate Gene		

HAL, Histidine and Coronary Heart Disease

Advances in Genomics & Metabolome

GWAS on Metabolomics

A Genome-wide Association Study of the Human Metabolome in a Community-Based Cohort

OPEN a ACCESS Freely available online PLOS GENETICS Eugene P. Rhee,^{1,6,18} Jennifer E. Ho,^{8,11,18} Ming-Huei Chen,^{9,1} Martin G, Larson, 11,14 Anahita Ghorbani, 3 Xu Shi, 2 liro T, Helen **Genetics Meets Metabolomics: A Genome-Wide** Amy Deik,⁶ Kerry A. Pierce,⁶ Kevin Bullock,⁶ Geoffrey A. Walfo Clary Clish,⁶ J.-R. Joanna Yeh,² Thomas J. Wang,^{16,17,19,*} and Association Study of Metabolite Profiles in Human Serum Christian Gieger^{1,2}, Ludwig Geistlinger¹, Elisabeth Altmaier^{3,4}, Martin Hrabé de Angelis^{5,6}, Florian Kronenberg⁷, Thomas Meitinger^{8,9}, Hans-Werner Mewes^{3,10}, H.-Erich Wichmann^{1,2}, Klaus M. Weinberger¹¹, Jerzy Adamski^{5,6}, Thomas Illig¹, Karsten Suhre^{3,4}* Human metabolic individuality in OPEN CACCESS Freely available online biomedical and pharmaceutical re Genetic Determinants Influencing Human Serum Karsten Suhre^{1,2,3}, So Youn Shin⁴*, Ann Kristin Petersen⁵*, Robert P. Mohney⁶, David Meredith⁷, Brigit Metabolome among African Americans Bing Yu¹, Yan Zheng¹, Danny Alexander², Alanna C. Morrison¹, Josef Coresh³, Eric Boerwinkle^{1,4}* A genome-wide association study 1 Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America, 2 Metabolon, Inc., Durham, North Carolina, United States of America, 3 Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, United States of America, 4 Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America in human urine Genome-wide association study identifies multiple loci Karsten Suhre^{1,2,10}, Henri Wallaschofski³, Johannes Raffler^{1,2}, Nele influencing human serum metabolite levels Christing War and Alexander Kushed Florier Kumerhaugh

An atlas of genetic influences on human blood metabolites

So-Youn Shin^{1,21,23}, Eric B Fauman^{2,23}, Ann-Kristin Petersen^{3,23}, Jan Krumsiek^{4,23}, Rita Santos⁵, Jie Huang¹, Matthias Arnold⁶, Idil Erte⁷, Vincenzo Forgetta⁹, Tsun-Po Yang¹, Klaudia Walter¹, Cristina Menni⁷, Lu Chen¹⁹ Louella Vasquez¹, Ana M Valdes^{7,10}, Craig L Hyde¹¹, Vicky Wang², Daniel Ziemek², Phoebe Roberts^{2,22}, Li Xi², Elin Grundberg^{6,12}, The Multiple Tissue Human Expression Resource (MuTHER) Consortium¹³, Melanie Waldenberger14, J Brent Richards7,4,15, Robert P Mohney16, Michael V Milburn16, Sally L John17, Jeff Trimmer^{18,21}, Fabian J Theis^{4,19}, John P Overington⁵, Karsten Suhre^{6,20,24}, M Julia Brosnan^{11,24}, Christian Gieger^{3,24}, Gabi Kastenmüller^{6,24}, Tim D Spector^{7,24} & Nicole Sor anzo^{1,9,24}

Faru Tukiainen^{1,3-5,37}, Antti-Pekka Sarin^{1,2}, Alfredo Ortega-Alonso^{1,6}, Emmi Tikkanen^{1,2}, Antti | Kangas⁵, Pasi Soininen^{5,0}, Peter Würtz^{1,3,5}, Kaisa Silander^{1,2}, Danielle M Dick⁹, u J Savolainen^{11,12}, Jorma Viikari¹³, Mika Kähönen¹⁴, Terho Lehtimäki⁷, Michael Inouye^{17,18}, Mark I McCarthy^{19,20}, Antti Jula², Johan Eriksson²¹⁻²⁴, ko Salomaa², Jaakko Kaprio^{1,6,27}, Marjo-Riitta Järvelin^{3,12,28-30}, Leena Peltonen³⁶, n B Freimer³², Mika Ala-Korpela^{5,8,11,12}, Aarno Palotie^{1,33-35} & Samuli Ripatti^{1,2,33}

PLOS GENETICS

E. 1

A

Genome-wide Significant Gene-Metabolite Pairs in 1,679 ARIC African Americans

Common variants with p-value $< 1.6 \times 10^{-10}$

Yu, PLoS Genet, 2014

Genome-wide Significant Gene-Metabolite Pairs in 1,679 ARIC African Americans

Common variants with p-value $< 1.6 \times 10^{-10}$

Yu, PLoS Genet, 2014

NAT8 and Chronic Kidney Disease

Hypothesis 1: NAT8 – N-acetlyornithine – chronic kidney disease?

Advances in Genomics & Metabolome

Why Sequencing?

Defining LOF

- Variants predicted to trigger nonsense-mediated decay (NMD)
- Categories:
 - 1) Premature stop codon-introducing
 - 2) Disrupt essential splice site
 - 3) Insertion/deletion frameshifts (indel)
- Additional Subdivision:
 - Full: all known protein coding transcripts
 - Partial: affecting only a fraction of known coding transcripts

Image via: http://compbio.berkeley.edu/people/ed/rust/

Annotating LOF

- 8,554 ARIC Study participants
 - 5,718 EA and 2,836 AA
 - (4,277 disc and 4,277 repl)
- Variant filtering:
 - Single-exon genes
 - Non protein-coding genes
 - Affect all gene isoforms
 - Terminal gene exon
- 36,787 LOF sites in 11,922 genes
- Average per individual:
 - Heterozygous (homozygous)

LOF type	Initial	After filtering	% Filtered out (Low-Confidence)
Stop gain	19,759	14,076	28.7%
Splice	10,634	8,843	16.8%
Frame Shift	33,703	13,868	58.8%
Total	64,096	36,787	

LOF type	AA	EA
Stop gain	27.3 (2.1)	21.1 (2.2)
Splice	16.7 (1.9)	9.6 (1.8)
Frame Shift	36.1 (4.4)	22.6 (3.1)
Total	80.1 (8.4)	53.3 (7.1)

FHS: phs000651.v4.p9; CHS: phs000667.v1.p1; ARIC phs000668.v1.p1

Significant LoF mutation metabolite pairs

324 single LoF varaints (MAF \ge 5%), 1285 genes with cMAC \ge 7 included, p-value < 1.3 × 10⁻⁷

SLCO1B1, Hexadecanedioate & Heart Failure

HR = 1.29, P = 0.05(ARIC AAs and EAs)

Yu, *Sci Adv*, 2016 ₂₁

Possible Mechanism of the Association

250 mg/kg/day hexadecanedioate feeding

Advances in Genomics & Metabolome

Whole Genome Composition

The genomes were annotated by ANNOVAR based on the RefSeq database

2.0 x 10¹⁵ sequenced bases

US corn production in 2014: 1.3 x 10¹⁵ kernels

From G. Abecasis

Analytic Approach WGS Annotation is Key

WGS Annotation Tool: WGSA (Liu et al, J Med Genet, 2015)

Asparagine:

- o A non-essential amino acid;
- o Biosynthesis/diet intake;
- o Required for development and function of the brain.

AGA gene:

12

10

so .

0

AGA expression levels

- Aspartylglucosaminidase Ο
- Ο acetylglucosamine.

rs11131799 (1st intron of *AGA*):

- Ο
- Influences the expression levels of Ο AGA (p = 0.01).

Asparagine

0

Multi-Omics Integration

Life Science data: Multi-omics, multi-technology, multi organism, multi dimensional

Achieving this vision, requires delivering large amounts of high quality data to the community in a timely manger.

Identification of "Causal" Pathways among the Serum Metabolome

- As shown above, the principal of Mendelian randomization can lend credence to claims of causal inference.
- This principal of Mendelian randomization can extend to information across the genome.
- We (Yazdani, 2016) have combined the principal of genome-wide Mendelian randomization with Directed Acyclic Graph algorithms. (GDAG).

Metabolomic-Triglycerides Network

In total, 9 metabolites have direct a effect on triglyceride levels.

Yazdani et. al, (2016). Metabolomics ³¹

Acknowledgments

University of Texas Health Science Center at Houston

Bing Yu Mandana Yazdani

Elena Feofanova Paul de Vries Xiaoming Liu Alanna Morrison

Framingham Heart Study

Robert Gerszten Eugene Rhee Dan Levy Vasan Ramachandran

Baylor College of Medicine Ginger Metcalf Fuli Yu Donna Muzny Richard Gibbs

Atherosclerosis Risk in Communities Study Christie Ballantyne Josef Coresh

