

Metabolomics approaches applied to study CDV and T2D in PREDIMED

Clary B. Clish, Ph.D.

Director, Metabolite Profiling Broad Institute of MIT and Harvard

May 31, 2017

Broad Institute Metabolomics Platform

A center of collaboration with a focus on development and application of technologies for the systematic analysis of metabolites in biological specimens

Team:

Amy Deik Kerry Pierce Kevin Bullock Justin Scott Courtney Dennis Sarah Jeanfavre Julian Avila, Ph.D. Daniel Hitchcock, Ph.D. + affiliated students & fellows Our areas of focus:

- Characterization of metabolic phenotypes and dependencies
- Drug activity and efficacy
- Discovery of novel metabolites and biological mediators
- Host-microbe interactions
- Signatures of disease/biomarkers

Metabolomics is a significant analytical challenge

- The number of endogenous metabolites is estimated to be less than 10,000 molecules (not including lipids or metabolites from food or the environment...)
- Physical properties differ widely among endogenous metabolites
 - Polarity: range from very polar to very nonpolar
 - Chemical stability: labile to very stable
- Abundance: cellular concentrations range from a few molecules to mM
 - Most techniques have a linear dynamic ranges < 4 orders of magnitude
 - Abundant metabolites may interfere with the analyses of less abundant metabolites
- Multiple analytical methods are needed to obtain full coverage of the metabolome
- Available sample quantity, time, and funding put practical limits on the scope of what can be measured

Initial QQQ MS-based metabolomics workflow (ca. 2009)

Sample prep & separation

- Multiple methods
- Methods matched to metabolite physical properties
- Capacity to process and analyze 1000's of samples

Mass spectrometry

- Targeted: Sensitive analyses of metabolites of known ID
- Plasma: 250-300 metabolites of known ID

Targeted metabolic pathway coverage (excluding lipids)

Kyoto Encyclopedia of Genes and Genomes (KEGG), Human Metabolic Pathways

Expanded metabolite coverage using HRAM profiling

- Example: Analyses of plasma samples of 25 future diabetic cases and 25 age/gender-matched controls
- Single method: HILIC, positive ion mode analysis
- Targeted vs nontargeted processing

52 targeted, known metabolites

9 metabolites p < 0.01

Current LC-MS-based platform

Example of an LC-MS dataset: polar, plasma metabolites

Data processing workflow for Orbitrap MS data

Output from nontargeted analyses

Со	mpound	m/z	RT (min)	Metabolite	PRISMPool01	8582-9	8582-10	8582-11	8582-12	8585-7
	TF36	126.1365	7.57	valine-d8	13792180	13722344	12250876	13836339	13143924	13010787
	TF37	174.1365	6.84	phenylalanine-d8	16567937	16630155	15375298	15144365	15304933	18320765
-	9196	126.1026	9.72	1-methylhistamine	2005	523	378	625	658	14602
	TF19	137.0709	8.37	1-methylnicotinamide	6871537	867313	7124207	912560	4690913	4313618
	4760	252.1089	5.32	2-deoxyadenosine	539		38	146	41	159
Subset of	TF18	228.0979	6.10	2-deoxycytidine	12711		10591			32844
up to 200 known	1319	154.0497	1.90	3-hydroxyanthranilic acid	4577	2635	894	3409	1963	6092
up to ~300 known	1725	192.0654	2.04	5-HIAA	47233	55167	46529	130324	176744	9493
metabolites	TF8	221.0921	6.74	5-hydroxytryptophan	350844	152998	152955	49676	6125	368406
metabolites	TF14	146.1176	9.02	acetylcholine	4046199279	1751909927	572289902	211966268	572596317	3396084940
	4624	268.1037	5.12	adenosine	167402	47856	44715	53345	96333	32342
	TF10	203.1503	9.92	ADMA	31581647	5486910	1941718	2527949	4237030	8070123
	TF2	90.0550	7.98	alanine	75753588	17439592	26593486	14433265	36605999	52221190
	9439	258.1095	10.65	alpha-glycerophosphocholine	50645	23001	43408	48539	14480	74458
	•	-	-							
		-								
	- 7108	82 0659	7 54		1471	2109	1376	1903	1873	2202
1000's	8488	82 5378	8 60		1004	4674	28	3891	2747	3040
	8355	83 0498	8 44		5531	1612	2660	748	2597	2565
	7212	83.0498	7.55		3142	170	622	157	200	4207
vet to be identified	6494	83.0611	6.93		20825	16199	16834	16719	19621	21729
	791	83.0861	1.75		27521	21335	33249	13261	23248	19603
LC-MS peaks	8187	84.0450	8.24		10873	3617	3896	4705	7725	5530
	7714	84.0451	7.85		52797	37063	57828	31601	71652	48960
•	7016	84.0814	7.41		376	456	351	248	302	686

samples

- Peaks described by m/z and RT
- Subset identified; confirmed by matching mass and RT to standards
- "Known" metabolites missed buy Progenesis QI manually extracted using TraceFinder software
- Reported as LC-MS peak areas

Why so many peaks in the nontargeted data sets?

- Where do the peaks come from?
 - Metabolites (!)
 - Multiple ion adducts and bond cleavage products may be formed from a single metabolite during electrospary ionization in MS
 - For polar positive ion mode methods, dominant ion is typically [M+H]⁺, but [M+Na]⁺, [M+K]⁺, and [M+NH₄]⁺ are often present at measurable levels
 - Redundant peaks share the same retention time as the dominant ion and are highly correlated
 - Contaminants in pre-analytical consumables (e.g. phthalates in plastic consumables)
 - Contaminants in solvents
 - Instrument noise
- How may the data be filtered?
 - Remove peaks with CV above a specific threshold
 - Remove peaks with excessive missing values in pooled plasma samples
 - Filter based on evidence of batch effects

QA/QC for cohort studies

Reference mixtures analyzed before and after to assure system performance **Internal standard** added in first step of sample extraction

- monitored during analyses
- may be used to standardize data

Pooled study samples analyzed every 20 study samples

- used to standardize data across datasets

Second pooled plasma reference sample, analyzed every 20 study samples

- used to assess: overall reproducibility & impact of standardization procedures

Type 2 diabetes

- Metabolic predictors of future T2D in FHS, MDC, MCDS, NHS, DPP
- Metabolic phenotyping of SLC16A11 haplotypes associated with T2D
- Intervention response in DPP
- Influence of diet on metabolic profiles and T2D in PREDIMED

Wang Nat Med 2011; 17:448-53 Rhee J Clin Invest 2011; 121:1402–1411 Wang J Clin Invest 2013;123:4309-4317 SIGMA Consortium. Nature 2014: 506:97-101 Magnusson Diabetes 2015; 64:3010-6 Walford Diabetes 2016; 65:1424-33

Renal disease

- CKD progression
- Prediction of CV mortality
- Novel markers of uremia

Kalim S et al. J Am Heart Assoc 2013; 2(6) Rhee E et al. JAm Soc Nephrol 2010; 21:1041 Rhee E et al. Am J Nephrol 2016; 43:366-74 Tran MT et al. Nature 2016; 531:528-32

Cancer metabolism

• Metabolic dependencies of cancer cells

Birsoy Nature 2014; 508:108-12 Israelsen Cell 2013;155:397-409 Vazguez F Cancer Cell 2013; 23:287-301 Jain M Science 2012: 336:1040-4 Wang Cell 2014;158:1309-23 Davidson Cell Metab 2016; 23:517-28 Kryukov Science 2016; 351:1214-8

Cardiovascular disease

- Predictors of CHD in DPP
- Predictors of CHD in WHI
- Influence of diet on metabolic profiles and CVD in PREDIMED

Guasch-Ferré Am J Clin Nutr 2016; 103:1408-16 Ruiz-Canela Clin Chem 2016: 62:582-92 Lewis GD J Am Coll Cardiol 2016: 67:174-89.

Mitochondrial disorders

- Markers of mitochondrial disease
- Mitochondrial dysfunction

Shaham PNAS 2010; 107:1571-5 Leoni Mol Genet Metab 2012: 105:463-71 Chen Cell Rep 2014; 7:27-34 Gohil J Biol Chem 2013; 288:35387-95 Bau *Elife* 2016; 5. pii: e10575.

Cancer

- Early plasma indicators of pancreatic cancer
- Effect of metformin and lifestyle on risk in the DPP
- Risk factors for breast cancer in younger women
- Dietary and hormonal determinants of cancer
- Predictors of prostate cancer

Mayers Nat Med 2014; 20:1193-8

Microbiome & disease

- Microbiome in IBD
- Gut microbiome and T1D
- Bile acid profiles associated with C. *difficile* infection

Meelu Inflamm Bowel Dis 2014: 20:1139-46 Kostic Cell Host Microbe 2015; 17:260-73 Allegretti Aliment Pharmacol Ther 2016; 43:1142-53

Infection & immunity

- Metabolic signaling and metabolism in immune cells
- Influence of infection on metabolism and vise versa

Tannahill Nature 2013: 496:238-42 Mascanfroni Nat Med 2015; 21:638-46 Wang Cell 2015; 163:1413-27 Matheson Cell Host Microbe 2015: 18:409-23 Graham Nat Commun 2015: 6:7838 Palsson-McDermott Cell Metab 2015; 21:65-80 Rothhammer Nat Med 2016; 22:586-97

Broad metabolomics platform

Analysis outline and status

Metabolic associations with CVD and T2D in PREDIMED

10:50-11:20	BCAA and T2D in the PREDIMED Study Miguel Ruiz-Canela, PhD, Universidad de Navarra, CIBERobn, Pamplona, Spain
11:20-11:40	Lipidomics of CVD and T2D Estefanía Toledo, MD, PhD, Universidad de Navarra, CIBERobn, Pamplona, Spain
11.40-12:00	Lipidomics (PCA analysis and scores) Cristina Razquin, PhD, Universidad of Navarra, CIBERobn, Pamplona, Spain
1:00-1:30	Application of network/pathway analysis in the PREDIMED metabolomics study Daniel Wang, MD, PhD, Harvard T.H. Chan School of Public Health, Boston, MA
1:30–1:50	Untargeted metabolomics in the PREDIMED Yan Zheng, MD, PhD, Harvard T.H. Chan School of Public Health, Boston, MA
1:50-2:20	Acylcarnitines and gut-microbiota related metabolites on T2D and CVD Marta Guasch-Ferré, PhD, Harvard T.H. Chan School of Public Health, Boston, MA
2:20–2:40	Tryptophan and urea cycle metabolites Edward Yu, Harvard T.H. Chan School of Public Health, Boston, MA
3:00–3:30	Methods to analyze metabolomics data and novel statistical approaches. Metabolomic footprints of the 14-point PREDIMED MedDiet score Liming Liang, PhD, Harvard T.H. Chan School of Public Health, Boston, MA
3:30–3:50	Metabolomic footprints of the Mediterranean diet: the effect of the randomized PREDIMED interventions Cristina Razquin, PhD, Universidad of Navarra, CIBERobn
3:50-4:10	Plasma trimethylamine-N-oxide and related metabolites involvement with the risk for type 2 diabetes in the PREDIMED trial Christopher Papandreou, Msc, PhD, Rovira i Virgili University

Type 2 diabetes

• Metabolic predictors of future T2D in FHS, MDC, MCDS, NHS, DPP

- Metabolic phenotyping of SLC16A11 haplotypes associated with T2D
- Intervention response in DPP
- Influence of diet on metabolic profiles and T2D in PREDIMED

Wang Nat Med 2011; 17:448-53 Rhee J Clin Invest 2011; 121:1402–1411 Wang J Clin Invest 2013;123:4309-4317 SIGMA Consortium. Nature 2014: 506:97-101 Magnusson Diabetes 2015; 64:3010-6 Walford Diabetes 2016; 65:1424-33

Renal disease

- CKD progression
- Prediction of CV mortality
- Novel markers of uremia

Kalim S et al. J Am Heart Assoc 2013; 2(6) Rhee E et al. JAm Soc Nephrol 2010; 21:1041 Rhee E et al. Am J Nephrol 2016; 43:366-74 Tran MT et al. Nature 2016; 531:528-32

Cancer metabolism

• Metabolic dependencies of cancer cells

Birsoy Nature 2014; 508:108-12 Israelsen Cell 2013;155:397-409 Vazguez F Cancer Cell 2013; 23:287-301 Jain M Science 2012: 336:1040-4 Wang Cell 2014;158:1309-23 Davidson Cell Metab 2016; 23:517-28 Kryukov Science 2016; 351:1214-8

Cardiovascular disease

- Predictors of CHD in DPP
- Predictors of CHD in WHI
- Influence of diet on metabolic profiles and CVD in PREDIMED

Guasch-Ferré Am J Clin Nutr 2016; 103:1408-16 Ruiz-Canela Clin Chem 2016: 62:582-92 Lewis GD J Am Coll Cardiol 2016: 67:174-89.

Mitochondrial disorders

- Markers of mitochondrial disease
- Mitochondrial dysfunction

Shaham PNAS 2010; 107:1571-5 Leoni Mol Genet Metab 2012: 105:463-71 Chen Cell Rep 2014; 7:27-34 Gohil J Biol Chem 2013; 288:35387-95 Bau *Elife* 2016; 5. pii: e10575.

Cancer

- Early plasma indicators of pancreatic cancer
- Effect of metformin and lifestyle on risk in the DPP
- Risk factors for breast cancer in younger women
- Dietary and hormonal determinants of cancer
- Predictors of prostate cancer

Mayers Nat Med 2014; 20:1193-8

Microbiome & disease

- Microbiome in IBD
- Gut microbiome and T1D
- Bile acid profiles associated with C. *difficile* infection

Meelu Inflamm Bowel Dis 2014: 20:1139-46 Kostic Cell Host Microbe 2015; 17:260-73 Allegretti Aliment Pharmacol Ther 2016; 43:1142-53

Infection & immunity

- Metabolic signaling and metabolism in immune cells
- Influence of infection on metabolism and vise versa

Tannahill Nature 2013: 496:238-42 Mascanfroni Nat Med 2015; 21:638-46 Wang Cell 2015; 163:1413-27 Matheson Cell Host Microbe 2015: 18:409-23 Graham Nat Commun 2015: 6:7838 Palsson-McDermott Cell Metab 2015; 21:65-80 Rothhammer Nat Med 2016; 22:586-97

Type 2 diabetes

- Metabolic predictors of future T2D in FHS, MDC, MCDS, NHS, DPP
- Metabolic phenotyping of SLC16A11 haplotypes associated with T2D
- Intervention response in DPP
- Influence of diet on metabolic profiles and T2D in PREDIMED

Wang Nat Med 2011; 17:448-53 Rhee J Clin Invest 2011; 121:1402–1411 Wang J Clin Invest 2013;123:4309-4317 SIGMA Consortium. Nature 2014: 506:97-101 Magnusson Diabetes 2015; 64:3010-6 Walford Diabetes 2016; 65:1424-33

Renal disease

- CKD progression
- Prediction of CV mortality
- Novel markers of uremia

Kalim S et al. J Am Heart Assoc 2013; 2(6) Rhee E et al. JAm Soc Nephrol 2010; 21:1041 Rhee E et al. Am J Nephrol 2016; 43:366-74 Tran MT et al. Nature 2016; 531:528-32

Cancer metabolism

• Metabolic dependencies of cancer cells

Birsoy Nature 2014; 508:108-12 Israelsen Cell 2013;155:397-409 Vazguez F Cancer Cell 2013; 23:287-301 Jain M Science 2012: 336:1040-4 Wang Cell 2014;158:1309-23 Davidson Cell Metab 2016; 23:517-28 Kryukov Science 2016; 351:1214-8

Cardiovascular disease

- Predictors of CHD in DPP
- Predictors of CHD in WHI
- Influence of diet on metabolic profiles and CVD in PREDIMED

Guasch-Ferré Am J Clin Nutr 2016; 103:1408-16 Ruiz-Canela Clin Chem 2016: 62:582-92 Lewis GD J Am Coll Cardiol 2016: 67:174-89.

Mitochondrial disorders

- Markers of mitochondrial disease
- Mitochondrial dysfunction

Shaham PNAS 2010; 107:1571-5 Leoni Mol Genet Metab 2012: 105:463-71 Chen Cell Rep 2014; 7:27-34 Gohil J Biol Chem 2013; 288:35387-95 Bau *Elife* 2016; 5. pii: e10575.

Cancer

- Early plasma indicators of pancreatic cancer
- Effect of metformin and lifestyle on risk in the DPP
- Risk factors for breast cancer in younger women
- Dietary and hormonal determinants of cancer
- Predictors of prostate cancer

Mayers Nat Med 2014; 20:1193-8

Microbiome & disease

- Microbiome in IBD
- Gut microbiome and T1D
- Bile acid profiles associated with C. *difficile* infection

Meelu Inflamm Bowel Dis 2014: 20:1139-46 Kostic Cell Host Microbe 2015; 17:260-73 Allegretti Aliment Pharmacol Ther 2016; 43:1142-53

Infection & immunity

- Metabolic signaling and metabolism in immune cells
- Influence of infection on metabolism and vise versa

Tannahill Nature 2013: 496:238-42 Mascanfroni Nat Med 2015; 21:638-46 Wang Cell 2015; 163:1413-27 Matheson Cell Host Microbe 2015: 18:409-23 Graham Nat Commun 2015: 6:7838 Palsson-McDermott Cell Metab 2015; 21:65-80 Rothhammer Nat Med 2016; 22:586-97

Metabolomics of the Women's Health Initiative (WHI)

Background

- Launched in 1991 and consisted of a set of clinical trials and an observational study
- Included two postmenopausal hormone therapy trials:
 - estrogen-plus-progestin study of women with a uterus
 - estrogen-alone study of women without a uterus
- Enrolled 161,808 generally healthy postmenopausal women

CHD study

- Goal: Identify metabolites associated with nonfatal and silent MI and CHD death
- Samples were from the observational study (WHI-OS; 93,726 participants) and the placebo arms of the hormone therapy trials (WHI-HT; 27,347 participants)
- Nested case-control study with participants matched based on 5-year age, race/ethnicity, hysterectomy status, and 2-year enrollment window
- Median time to CHD event among cases was 5.8 years in the discovery cohort and 4.2 years in the validation cohort

Kathy Rexrode

Baseline Characteristics

N (%) or mean (SD)	WHI-OS Discovery (n=944)	WHI-HT Validation (n=624)
Cases	472 (50%)	312 (50%)
Age, years	67 (7)	66 (7)
Race White Black Other	696 (73%) 138 (15%) 110 (12%)	510 (81%) 75 (12%) 22 (7%)
Systolic blood pressure, mmHg	133 (19)	134 (19)
Diabetes, reported	103 (11%)	96 (15%)
BMI , m²/kg	28 (6)	29 (6)
Total cholesterol, mg/dL	232 (47)	235 (41)
HDL cholesterol, mg/dL	54 (16)	50 (14)
Smoking status , reported Current Former Never	76 (8%) 416 (44%) 452 (48%)	90 (14%) 226 (36%) 311 (50%)
Aspirin use, reported	214 (23%)	171 (27%)
Statin use, reported	81 (9%)	96 (15%)
Anti-hypertensive use, reported	235 (25%)	186 (30%)
Anti-diabetic use, reported	60 (6%)	70 (11%)

WHI metabolomics

Metabolites associated with risk of future CHD

Metabolite	WHI-H Adjusted for n	T natching ¹	WHI-HT Adjusted for risk factors ²		
	Odds Ratio	p value	Odds Ratio	p value	
Succinate	1 / 2 (1 20 1 69)	2 0F_05	1 56 (1 30, 1 87)	8 2F₋∩7	
Glutamate	1.42 (1.20, 1.07)	5 5E-09	1.50 (1.30, 1.07)	8.3E-07	
Glutamine	0.61 (0.50, 0.73)	1.4F-08	0.67 (0.55, 0.82)	2.5E-05	
PGE2	1.38 (1.17, 1.62)	1.0E-04	1.34 (1.12, 1.59)	9.0E-04	
2-Hydroxyglutarate	1.45 (1.22, 1.72)	1.0E-05	1.35 (1.13, 1.62)	9.3E-04	
CMP	1.38 (1.17, 1.63)	1.1E-04	1.33 (1.11, 1.59)	1.4E-03	
IMP	0.75 (0.64, 0.89)	4.9E-04	0.77 (0.65, 0.92)	3.3E-03	
Sucrose	1.40 (1.18, 1.65)	7.2E-05	1.29 (1.08, 1.54)	4.8E-03	

¹ Adjusted for baseline age, race/ethnicity, hysterectomy status, and enrollment window

² Adjusted for baseline age, race/ethnicity, hysterectomy status, and enrollment window, aspirin use, statin use, anti-hypertensive use, smoking, systolic blood pressure, diabetes, total and HDL cholesterol

Preliminary validation in PREDIMED

 PREvención con Dleta MEDiterránea (PREDIMED) was a primary prevention trial designed to determine if adherence to the Mediterranean Diet could prevent CVD in a high-risk population

N Engl J Med 2013; 368:1279-90

- Case-cohort metabolomics study of 980 PREDIMED participants to determine associations between metabolites and diet and CVD risk
 - median 4.8 years of follow up
 - 229 cases of CVD (nonfatal stroke, nonfatal MI, or CVD death
 - 79 cases of CHD

Miguel Martinez-Gonzalez, Frank Hu

Hydroxy-PCs are associated with CVD and CHD in PREDIMED

Metabolite	PREDIME CVD (n=229	ED* cases)	PREDIMED* CHD (n=79 cases; both genders)		
	Odds Ratio	p value	Odds Ratio	p value	
C34:2 hydroxy-PC	1.40 (1.15, 1.70)	7.6E-04	1.56 (1.09, 2.24)	2.0E-02	
C36:4 hydroxy-PC	1.36 (1.12, 1.66)	2.0E-04	1.59 (1.10, 2.30)	1.0E-02	

* Adjusted for age, gender, intervention group, statin use, smoking, systolic blood pressure, diabetes, total and HDL cholesterol

- mean age 68 years
- 46% male

Hydroxyeicosatetraenoic acid (HETE) synthesis

Linkage between oxidized lipids and atherosclerosis

Is there a common driver for OxLDL, hydroxy-PC, and mono-HETE generation?

Acknowledgements

HSPH

Dong Wang Liming Liang Frank Hu

Rovira i Virgili University

Marta Guasch-Ferré Jordi Salas-Salvadó

University of Navarra

Miguel Ruiz-Canela Estefania Toledo Miguel Martinez-Gonzalez

R01-HL118264 R01-DK102896 HHSN268201300008C

BWH

Nina Paynter Franco Giulianini **Christine Albert** Kathryn Rexrode

Broad Metabolomics Platform

Amy Deik Kevin Bullock Amanda Souza Justin Scott Kerry Pierce Courtney Dennis Daniel Hitchcock

Sarah Jeanfavre Julian Avila Pacheco

UMass Amherst

Raji Balasubramanian

Type 2 diabetes

 Metabolic predictors of future T2D in FHS, MDC, MCDS, NHS, DPP

- Metabolic phenotyping of SLC16A11 haplotypes associated with T2D
- Intervention response in DPP
- Influence of diet on metabolic profiles and T2D in PREDIMED

Wang Nat Med 2011; 17:448-53 Rhee J Clin Invest 2011; 121:1402–1411 Wang J Clin Invest 2013;123:4309-4317 SIGMA Consortium. Nature 2014: 506:97-101 Magnusson Diabetes 2015; 64:3010-6 Walford Diabetes 2016; 65:1424-33

Renal disease

- CKD progression
- Prediction of CV mortality
- Novel markers of uremia

Kalim S et al. J Am Heart Assoc 2013; 2(6) Rhee E et al. J Am Soc Nephrol 2010; 21:1041 Rhee E et al. Am J Nephrol 2016; 43:366-74 Tran MT et al. Nature 2016; 531:528-32

Cancer metabolism

• Metabolic dependencies of cancer cells

Birsoy Nature 2014; 508:108-12 Israelsen Cell 2013;155:397-409 Vazguez F Cancer Cell 2013; 23:287-301 Jain M Science 2012: 336:1040-4 Wang Cell 2014;158:1309-23 Davidson Cell Metab 2016; 23:517-28 Kryukov Science 2016; 351:1214-8

Cardiovascular disease

- Predictors of CHD in DPP
- Predictors of CHD in WHI
- Influence of diet on metabolic profiles and CVD in PREDIMED

Guasch-Ferré Am J Clin Nutr 2016; 103:1408-16 Ruiz-Canela Clin Chem 2016: 62:582-92 Lewis GD J Am Coll Cardiol 2016: 67:174-89.

Mitochondrial disorders

- Markers of mitochondrial disease
- Mitochondrial dysfunction

Shaham PNAS 2010; 107:1571-5 Leoni Mol Genet Metab 2012: 105:463-71 Chen Cell Rep 2014; 7:27-34 Gohil J Biol Chem 2013; 288:35387-95 Bau *Elife* 2016; 5. pii: e10575.

Cancer

- Early plasma indicators of pancreatic cancer
- Effect of metformin and lifestyle on risk in the DPP
- Risk factors for breast cancer in younger women
- Dietary and hormonal determinants of cancer
- Predictors of prostate cancer

Mayers Nat Med 2014; 20:1193-8

Microbiome & disease

- Microbiome in IBD
- Gut microbiome and T1D
- Bile acid profiles associated with C. *difficile* infection

Meelu Inflamm Bowel Dis 2014: 20:1139-46 Kostic Cell Host Microbe 2015; 17:260-73 Allegretti Aliment Pharmacol Ther 2016; 43:1142-53

Infection & immunity

- Metabolic signaling and metabolism in immune cells
- Influence of infection on metabolism and vise versa

Tannahill Nature 2013: 496:238-42 Mascanfroni Nat Med 2015; 21:638-46 Wang Cell 2015; 163:1413-27 Matheson Cell Host Microbe 2015: 18:409-23 Graham Nat Commun 2015: 6:7838 Palsson-McDermott Cell Metab 2015; 21:65-80 Rothhammer Nat Med 2016; 22:586-97

Metabolic predictors of T2D in the FHS: elevated at baseline, 4-12 years before diagnosis

Wang TJ et al. Nat Med 2011; 17:448-453

Rhee EP et al. J Clin Invest 2011; 121:1402-11

Wang TJ et al. J Clin Invest 2013; 123:4309-17

Nontargeted profiling of FHS: associations with HOMA-IR

- 1000 FHS Gen 3 participants
- Nontargeted HILIC-pos method (knowns + unknown peaks)
- ~5000 peaks were observed in >80% of individuals
- ~500 peaks associated with key metabolic traits

Table 2: Targeted analysis on new platform						
Metabolites associated with HOMA-IR						
Compound	β estimate	P value				
glutamate	0.0292	1.53E-40				
valine	0.0198	7.32E-18				
tyrosine	0.0204	2.35E-17				
C5 carnitine	0.0185	3.04E-16				
isoleucine	0.0180	5.77E-16				
alanine	0.0195	2.84E-15				
leucine	0.0164	1.73E-13				
C3 carnitine	0.0152	1.50E-11				
glycine	-0.0166	3.85E-11				
3-hydroxyanthranilic acid	0.0153	3.86E-09				
C6 carnitine	0.0148	5.16E-09				
acetylglycine	-0.0137	8.21E-08				
phenylalanine	0.0128	2.14E-07				
sarcosine	0.0123	2.86E-07				
dimethylglycine	0.0117	4.86E-07				

Table 3: Non-targeted analysis on new platform					
Meta	abolites associate	ed with HOM	A-IR		
m/z	Retention time	βestimate	P value		
783.6359	7.17	0.0258	5.63E-32		
313.2733	1.63	0.0277	1.72E-30		
612.5556	1.63	0.0275	7.52E-30		
202.1185	7.79	0.0254	7.68E-25		
575.5028	1.61	0.0247	1.16E-23		
116.1073	7.87	0.0231	1.31E-23		
606.6179	1.66	0.0227	5.97E-23		

Metabolite correlations with phenotypes in the FHS

~200 peaks associated with hepatic fat (age and sex adjusted)

Robert Gerszten John O'Sullivan Jordan Morningstar

Cmpd #5836 (m/z 202.1185) is associated with hepatic fat in FHS

Phenotype	covariates	n	beta	p value
LPR	AGE1:sex	464	-0.197	2.28E-24
LPR	AGE1:sex:bmi1	464	-0.175	4.81E-16
LPR	AGE1:sex:smoke1:alc1	463	-0.201	6.22E-25
	AGE1:sex:smoke1:alc1:HDL1:			
LPR	log(tg1):gluc1:diab:HTN1	457	-0.186	1.49E-16
	AGE1:sex:smoke1:alc1:HDL1:			
LPR	log(tg1):gluc1:diab:HTN1:bmi1	457	-0.174	1.71E-13

~200 peaks associated with hepatic fat (age and sex adjusted)

AGXT2: A Multifunctional enzyme

(A) Alanine-glyoxylate aminotransferase

alanine

y.o-dioxovaleric acid

(DOVA)

δ-aminolevulinic acid

(ALA)

pyruvate

DMGV: α -keto-dimethyl- δ -(N^G,N^Gdimethylguanidynol) valeric acid

Rodionov RN et al. Trends Pharmacol Sci 2014; 35:575-82

DMGV predicts incident DM in FHS Gen 3 and MDC

- FHS Gen 3 (4 yrs f/u)
 - 20 incident cases of DM
 - 1.8-fold increase per SD increment
 - p = 0.00045 (age- and sex-adjusted)
- Malmo Diet and Cancer Study (12.6 yrs f/u)
 - 196 incident cases of DM
 - 1.6-fold increase per SD increment
 - p = 8.6E-4 (adjusted for age, sex, glucose, and BMI)

Acknowledgements

MGH/BIDMC

Robert Gerszten **Thomas Wang** Jordan Morningstar

John O'Sullivan

Susan Cheng

Eugene Rhee

Jose C Florez

Flizabeth McCabe

Gregory D Lewis

Dong Wang

HSPH

Liming Liang Frank Hu

Rovira i Virgili University

Marta Guasch-Ferré Jordi Salas-Salvadó

University of Navarra

Miguel Ruiz-Canela Estefania Toledo Miguel Martinez-Gonzalez

BWH

Nina Paynter Franco Giulianini Christine Albert Kathryn Rexrode **UMass Amherst**

Lund University Olle Melander

FHS

Martin Larson Vasan S. Ramachandran Paul F Jacques Céline Fernandez Christopher O'Donnell NIH: R01-HI 118264 R01-DK081572 R01-DK102896 N01-HC25195 HHSN268201300008C

Broad Metabolomics Platform

Amy Deik Kevin Bullock Amanda Souza Justin Scott Kerry Pierce

Sarah leanfavre Julian Avila Pacheco Courtney Dennis Daniel Hitchcock

Additional metabolomics studies in longitudinal cohorts

CVs of C8-pos (lipid) peaks in reference pooled plasma

	KNOW	NS (200)	ALL (6358)
CV	# peaks	%	# peaks	%
< 1.00	200	100%	5400	85%
< 0.50	195	98%	3817	60%
< 0.25	188	94%	2471	39%
< 0.20	184	92%	2080	33%
< 0.15	175	88%	1546	24%
< 0.10	150	75%	929	15%

n = 102 PP samples

CVs of HILIC-pos (polar metabolite) peaks in reference pooled plasma

	KNOW	NS (200)	ALL (2	2833)
CV	# peaks	%	# peaks	%
< 1.00	78	94%	2355	83%
< 0.50	75	90%	1708	60%
< 0.25	68	82%	1130	40%
< 0.20	64	77%	945	33%
< 0.15	60	72%	668	24%
< 0.10	42	51%	334	12%

n = 99 PP samples

Framingham Heart Study: Longitudinal population-based study

Robert Gerszten, Thomas Wang

Study design: Metabolic predictors of T2D

- Initial nested case-control study:
 - 189 future T2D cases and
 189 matched controls, pre & post-OGTT
 - 756 samples in discovery set
- Matching based on fasting glucose, age, sex, BMI, and hypertension status

Table 1 Baseline characte	eristics (Fram	ungham Offspri	ng Study)
	Cases	Matched	Random cohort
	(n = 189)	controls ($n = 189$)	(n = 400)
Clinical characteristics			
Age, years	56 ± 9	57 ± 8	55±9
Women, %	42	42	58
Body mass index, kg m ⁻²	30.5 ± 5.0	30.0 ± 5.5	26.8 ± 4.6
Waist circumference, cm	102.3 ± 12.1	99.6 ± 13.5	90.8 ± 13.8
Hypertension, %	53	53	27
Parental history of diabetes ^a , %	31	18	21
Physical activity index	35 ± 6.2	35 ± 7.3	35 ± 6.0
Total caloric intake, kcal	$1,982 \pm 660$	$1,866 \pm 600$	1854 ± 581
Total protein intake, g	82 ± 28	78 ± 28	76 ± 26
Phenylalanine intake, g	3.6 ± 1.2	3.4 ± 1.3	3.4 ± 1.1
Tyrosine intake, g	3.0 ± 1.0	2.8 ± 1.1	2.8 ± 1.0
Leucine intake, g	6.5 ± 2.2	6.1 ± 2.3	6.0 ± 2.1
lsoleucine intake, g	3.9 ± 1.3	3.7 ± 1.4	3.6 ± 1.3
Valine intake, g	4.3 ± 1.5	4.1 ± 1.5	4.0 ± 1.4
Other laboratory tests			
Fasting glucose, mg dl ⁻¹	105 ± 9	105 ± 9	94 ± 9
2-h glucose (OGTT), mg dl ⁻¹	126 ± 32	118 ± 30	103 ± 27
Serum triglycerides, mg dl-1	192 ± 114	151 ± 90	138 ± 93
Fasting insulin, µIU mI ^{−1}	13.7 ± 9.9	11.9 ± 8.8	8.1 ± 7.2
HOMA-IR	3.5 ± 2.6	3.1 ± 2.3	1.9 ± 1.8
HOMA-B	2.7 ± 2.0	2.4 ± 1.7	1.8 ± 1.5

Values are mean $\pm\,s.d.$ or percentage. <code>^aParental history information missing in 57 participants.</code>

Many metabolic changes in response to OGTT:

However, no difference between incident cases and controls observed

				Percent Change
Metabolite	DF	t-statistic	P-value	post vs. pre
3-OH-anthranilic acid	34	4.82	<.0001	-20.66%
5-HIAA	187	6.39	<.0001	-7.45%
5-hydroxytryptophan	92	5.21	<.0001	-21.20%
ADMA/SDMA	187	12.5	<.0001	-13.41%
alanine	188	6.16	<.0001	-5.17%
aminoisobutyric acid	187	15.42	<.0001	-24.01%
arginine	187	6.24	<.0001	-13.78%
asparagine	187	18.28	<.0001	-23.96%
aspartate	188	12.33	<.0001	-21.99%
betaine	187	-4.16	<.0001	3.12%
carnitine	187	-6.79	<.0001	5.05%
choline	188	-4.23	<.0001	4.67%
cis/trans-hydroxyproline	187	20.97	<.0001	-26.42%
citrulline	187	36.37	<.0001	-39.09%
dimethylglycine	187	5.18	<.0001	-4.27%
glutamic acid	188	9.75	<.0001	-12.21%
glutamine	188	6.48	<.0001	-5.12%
glycerol	138	13.8	<.0001	-42.57%
glycine	187	11.06	<.0001	-11.75%
histidine	187	13.22	<.0001	-14.89%
isoleucine	188	36.6	<.0001	-37.40%
kynurenic acid	187	11.01	<.0001	-29.19%
leucine	188	35.72	<.0001	-36.14%
lysine	188	10.26	<.0001	-15.31%
methionine	188	20.4	<.0001	-28.72%
niacinamide	188	6.59	<.0001	-17.31%
NMMA	187	10.92	<.0001	-12.26%
ornithine	187	13.92	<.0001	-22.26%
phenylalanine	187	24.23	<.0001	-22.36%
proline	187	19.09	<.0001	-12.13%
serine	187	18.44	<.0001	-20.57%
serotonin	181	7.44	<.0001	-39.28%
taurine	188	14.35	<.0001	-11.91%
thiamine	188	4.24	<.0001	10.16%
threonine	187	31.47	<.0001	-22.74%
trimethylamine-n-oxide	188	4.85	<.0001	-5.13%
tryptophan	187	13.55	<.0001	-12.88%
tyrosine	188	28.39	<.0001	-28.53%
valine	188	30.22	<.0001	-21.13%
xanthosine	188	7.5	<.0001	-12.15%
alpha-glycerophosphocholine	188	-3.97	0.0001	22.13%

Summary

- Metabolomics can reveal early metabolic changes in subclinical disease
- Elevated branched chain and aromatic amino acids, 2-aminoadipic acid, and shifts in TAG fatty acid content predict future T2D
- Plasma BCAA are also associated with risk of future pancreatic cancer diagnosis and may be linked to increased protein turnover
- We have identified novel oxidized lipids associated with CHD risk
 - First study showing link between either hydroxy-PCs or mono-HETEs and CHD prospectively in humans

Current directions:

- Extending T2D work in a number of different studies; foci include: other ethnic groups, treatment and lifestyle interventions, and prediction in more youthful participants
- Applying current nontargeted methods to T2D, PDAC, and other cancers; exploring associations with genetics and imaging data