The Women's Genome Health Study (WGHS): Recent progress and opportunities in the genetic epidemiology of aging **Daniel Chasman** Nutrition Omics symposium, HSPH May 30, 2017

Women's Health Study (WHS)

- A trial of randomized aspirin (100 mg/alt day) and vitamin E (600 IU/alt day) v. placebo
- Primary prevention of CVD and cancer over 10 years ending in 2004
- Among 39,876 female healthcare professionals, 45+ yrs at baseline
- Now an NIH-funded observational cohort
- Julie Buring (PI) and I-Min Lee (co-PI)
- Not Nurses' Health Study, not Women's Health Initiative!

WHS results (2005)

¹Ridker et al. 2005 NEJM 352:1293; ²Cook et al. 2005 JAMA 294:47; ³Lee et al. 2005 JAMA 294:56

WHS design

- Population recruited from
 - -1,757,247 invitations
 - 453,787 completed baseline questionnaire (194,659 willing, 65,169 eligible (14%) for placebo run-in
 - 39,876 selected after run-in, no overlap with NHS
- Questionnaires were at least annual during the trial
- Blood cohort among N=28,345 (71.1%)

Women's Genome Health Study (WGHS)

The WGHS is the WHS blood cohort augmented with whole genome genetic data Clinical Chemistry 54:2 249–255 (2008) **Special Reports**

Rationale, Design, and Methodology of the Women's Genome Health Study: A Genome-Wide Association Study of More Than 25 000 Initially Healthy American Women

Paul M Ridker,^{1,2*} Daniel I. Chasman,^{1,2} Robert Y.L. Zee,^{1,2} Alex Parker,³ Lynda Rose,¹ Nancy R. Cook,^{1,2} and Julie E Buring^{1,2} for the Women's Genome Health Study Working Group

Primary genetic data (2007-2009), Paul Ridker, Pl

Illumina HumanHap300 Duo "+" array (~360,000 SNPs) Custom content enriched for cardiovascular candidates and functional markers Sample size: whites: N=23,294, blacks=N=378 Imputation 1000 Genomes Secondary genetic data (2011), Daniel Chasman, Pl Illumina Exome v. 1.1 whites only: N=22,618 Sequencing through AFGen TOPMed project (2016-2017)

114 cases of "premature Atrial AF/TOPMed

WGHS baseline (cross sectional data)

- Basic clinical profile
- Pre-existing conditions, reproductive aging and history, migraine, medications
- Diet QQ same as NHS/HPFS
- Physical activity/alcohol/smoking
- Educational status
- Biomarkers in the blood sample (N=28,345) LDL-C, HDL-C, triglycerides, apoA1, apoB, Lp(a), C-reactive protein, ICAM-1, fibrinogen, homocysteine, creatinine, HbA1c

GWAS on all of these biomarkers

Lipoprotein profile from NMR

- Lipoprotein subfractions, e.g. LDL, HDL, and VLDL particle concentration and size (NMR)
- entire sample (Samia Mora)

Chasman et al. PLoS Genetics 2009 5(11):e1000730

Additional, investigator-initiated, cross-sectional data during f/u

By self-report

- Perceived stress (Michele Albert)
- Physical activity accelerometer (I-Min Lee)
- Hearing/fibroids (Cynthia Morton)
- Endometriosis (Cynthia Morton, Kathy Rexrode)
- Handedness (Guillaume Pare)
- Osteoporosis

Prospectively ascertained endpoints

- Primary endpoints, CVD and cancer, are confirmed by physician review of medical records according to WHO standards
- Some other endpoints also adjudicated by investigatorinitiated research

CVD events (2015)		Cancer eve (2015)	nts	
Event	Ν	Event	Ν	
Major CVD	1178	Total	3672	
MI	451	breast	1524	
lsch. stroke	552	CRC	309	
CHD	1122	lung	294	
Total CVD	1782	pancreas	60	

Other events					
Incident diabetes (N=1927)					
Incident Afib. (Albert, N=959)					
Incident hypertension					
VTE					
Longitudinal BMI (obesity)					
AMD					
Cognitive decline (Grodstein)					

WGHS age distribution baseline (1992-1994) and 2015

- In 2017, f/u for 25 yrs
- Mortality near 100% through National Death Index
- >88% of surviving ^z participants return questionnaires (as of ~2013)

Age at baseline (1992–1994) and 2015 among the WGHS whites (N=23,294)

age

Emphasis areas of genetic research

- Cardiovascular disease
 - CVD risk factors, lipids/lipoproteins, inflammation measures, BP, incident disease
- AFib
- Diabetes
- AMD
- Kidney function
- Women's health
 - Menarche, menopuase, breast cancer, migraine, fibroids
- Migraine (more prevalent among women)
- Nutrition genetics

Participation in major GWAS consortia

- CHARGE (Heart and Aging) Working groups: AFGen, ReproGen, Inflammation, T2D, Neuro, Mitochondria, BP, INVENT, Nutrition, Gxlifestyle, Hematology
- GIANT, including GxE (Anthropometry)
- Global Lipids (circulating lipids)
- ICBP (blood pressure)
- IHGC (headache)
- DietGen (w/NHS/HPFS) (diet)
- LifeGen (longevity)
- CARDIoGRAM (CAD)
- BPC3 (breast cancer)
- GEFOS (bone)

Results: Reproductive aging (w/NHS)

Genome-wide association studies identify loci associated with age at menarche and age at natural menopause

Chunyan He^{1,2}, Peter Kraft^{1,2}, Constance Chen^{1,2}, Julie E Buring^{2–4}, Guillaume Paré^{3–5}, Susan E Hankinson^{2,6}, Stephen J Chanock⁷, Paul M Ridker^{2–5}, David J Hunter^{1,2,6–8} & Daniel I Chasman^{3–5}

He et al. Nature Genetics 2009 41:724

Now with ReproGen

- menarche

106 loci (development, parent-of origin, interaction w/age!)

– natural menopause
44 loci (DNA repair)

Results: Migraine

Now (2016) with the International Headache Genomics Consortium (IHGC) 38 loci (strong emphasis on vascular development)

Nature Genetics 2016 48:856

Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

Padhraig Gormley^{1-4,81}, Verneri Anttila^{2,3,5,81}, Bendik S Winsvold^{6–8}, Priit Palta⁹, Tonu Esko^{2,10,11}, Tune H Pers^{2,11–13}, Kai-How Farh^{2,5,14}, Ester Cuenca-Leon^{1–3,15}, Mikko Muona^{9,16–18}, Nicholas A Furlotte¹⁹, Tobias Kurth^{20,21}, Andres Ingason²², George McMahon²³, Lannie Ligthart²⁴, Gisela M Terwindt²⁵, Mikko Kallela²⁶,

Results: G x aspirin interaction during WHS trial

Aspirin effects on incident CVD stratified by genotype

Atherosclerosis 2009 203:271

ATVB 2014 34:2160 (Kathryn Hall)

Results: Genetic risk score (GRS) v. clinical prediction

Table 2. Discrimination and Reclassification After Addition of Genetic Risk Score (GRS) or Family History of Cardiovascular Disease (CVI	C)
to Base Model	

			101 SNP GRS ^a			12 SNP GRS ^b				Family History of Premature MI ^c			
		Discrimination		Reclassification		Discrimination		Reclassification		Discrimination		Reclassification	
	Base Model C Index	C Index	<i>P</i> Value ^d	NRI	P Value ^e	C Index	<i>P</i> Value ^d	NRI	<i>P</i> Value ^e	C Index	P Value ^d	NRI	<i>P</i> Value ^e
Age	0.701	0.704	.14	1.2	.13	0.705	.01	0.6	.52	0.709	.01	3.1	.02
Covariates ATP III ^f	0.793	0.793	.92	0.5	.24	0.794	.12	0.5	.59	0.796	.06	1.4	.28
Reynolds ^g	0.796	0.796	.84	0.4	.21	0.796	.12	0.8	.36	NA	NA	NA	NA

Abbreviations: ATP III, Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; MI, myocardial infarction; NA, data not applicable; NRI, net re-

JAMA 2010 303:631 (Nina Paynter)

Results: BP by self report

- Baseline BP was self-reported by categories SBP (10), DBP (7)
- Reluctance in the genetics community to use these measures
- With Framingham HS investigators* assessed BP loci the WGHS at loci from the CHARGE (29,136) and GlobalBPGen (N=34,433) consortia GWAS (excluding WGHS)
- High concordance and formal replication
 - Among 43 candidate SNPs 13/18 primary, 3/13 secondary, SNPs, and 4/12 eSNPs met p < 0.05/43
- Meta-analysis
 - 1 new locus (BLK-GATA4) and 1 new genome-wide significant SNP at CASZ1 in Europeans

*Jennifer Ho, Andrew Johnson, & Dan Levy. Ho et al. J. Hypertension 2011 29:62.

Macronutrients (Audrey Chu)

- Carbohydrates, protein and fat
- Absolute intakes are highly variable
- Average intake is more consistent across populations when calculated as percentage of total caloric intake

• Heritability of macronutrient intakes ~ 11-65%

Methods

- DietGen Consortium (N=33,338)
 - Health Professional's Follow-up Study (HPFS)
 - Nurses' Health Study (NHS)
 - Women's Genome Health Study (WGHS)
- Genotyping Affymetrix- or Illumina-based genotyping panels imputed to 2.6 million SNPs (HapMap release 22)
- Phenotyping Percentage of total energy intake from carbohydrate, protein and fat derived by Willett FFQ
- Genetic association analysis
 - Each SNP was adjusted for age, location and population stratification in an additive model, +/- BMI
 - Fixed-effects meta-analysis, MAF ≥ 0.05

Chromosome 19q13 (FGF21)

- rs838133: synonymous SNP in FGF21 gene
- DietGen: β -0.12% protein, 0.23% carbs, -0.21% fat per minor allele
- CHARGE association for protein: β -0.10% (P=7.3x10⁻⁴)

- rs197273: intergenic SNP near TANK
- DietGen: β 0.31% carbs, -0.17% fat per minor allele
- CHARGE association with carbohydrates: $\beta 0.17\%$ (P=2.9x10⁻³)

Biological Context

- *FGF21* (fibroblast growth factor-21)
 - Stimulates glucose uptake in adipocytes
 - Expression can be induced through fasting and feeding in rodents
 - Administration increases energy expenditure in mice
 - Associated with T2D and obesity
- TANK (TRAF family member-associated activator)
 - Binds to cytokines in inflammation and immunity
 - Not previously linked to dietary intake

AlcGen paper*

- GWAS of alcohol consumption 70,460 people, 30 cohorts with replication f/u
- Only *KLB* locus genome-wide significant with f/u sample
- TANK SNP genome-wide significant initially but not combination with f/u sample
- KLB gene (β Klotho) has reciprocal effects to FGF21

Heritability Results

Estimated proportion of variance in macronutrient intake explained by common tag-SNPs in the WGHS (GCTA)

	(FGF21			
	h²	SE	Р	h²	
Carbohydrates	6.2%	2.1%	2.1x10 ⁻⁴	0.052%	
Protein	8.0%	2.2%	1.4x10 ⁻⁵	0.062%	
Fat	6.4%	2.1%	3.2x10 ⁻⁴	0.057%	

Adjusted for age, location, population substructure

- Additional variants to be identified
- Heritability underestimated due to use of tagging SNPs to estimate relatedness

What determines coffee drinking habits?

Some influences are cultural

Coffee and Caffeine Genetics Consortium (Marilyn Cornelis*)

• Populations

>100,000 individuals from 48 studies in the US, Europe, and Pakistan

- Coffee consumption measure cups/day among coffee drinkers by self-report
- Genetic data

HapMap-based analysis (2.6 million SNPs)

Statistical test

Test association between self-reported coffee consumption and genetic variation

*Formerly HSPH, now at Northwestern

GWAS findings: 8 genes, 6 novel

*Identified previously in genetic analysis of habitual caffeine consumption

How big are the effects?

<u>Average</u> coffee consumed for different genotypes at the CYP1A1/2 gene(s):

0.14 additional cups/day per inherited

"T"-allele compared to "C" allele

Four genes involved in caffeine (xenobiotic) metabolism

Metabolic functions

- Degrading caffeine

 <u>CYP1A1/2*</u> cytochrome p450
 <u>POR</u> P450 (cytochrome)
 oxidoreductase
- Regulating p450 enzymes <u>AHR*</u> - aryl hydrocarbon receptor
- Excreting caffeine and its metabolites
 <u>ABCG2</u> ATP-binding cassette G2

*Identified previously in genetic analysis of habitual caffeine consumption

Remaining genes: two functions

A. Genes involved in behavior, psychiatric traits, and mood <u>BDNF</u> – "brain-derived neurotrophic factor." Associated with smoking initiation, obesity/body mass index (eating) and modulates activity of serotonin, dopamine, and glutamate

<u>SLC6A4</u> – "solute carrier family 6 member A4." Transports serotonin into neurons.

B. Genes involved in glucose metabolism, a possible link to coffee's protective effect on diabetes.

<u>GCKR</u> – "glucokinase regulatory protein." Associated with plasma glucose, insulin levels, triglycerides, other lipids, inflammation markers, etc.

<u>MXLIPL</u> – "MLX interacting protein-like." Regulates pathways that influence triglyceride levels in response to plasma glucose.

Genetic interaction with sugarsweetened beverages (Qibin Qi, Lu Qi)

Cross-sectional BMI increase per SSB serving

Incident obesity (prospective) WGHS replication w/~6 yrs f/u

NEJM 2012 367:1378

Recap

- The Women's Genome Health Study (WGHS) is a large prospective cohort for whole genome genetic analysis among women
- Primary endpoints in CVD and cancer
- Follow-up is ongoing, now into 25th year
- Mean age from ~52 to ~73 (2015)
- Rich data source at baseline including detailed clinical profile, blood-based biomarkers, dietary habits

WGHS contributors

Investigators from DPM

Paul Ridker (WGHS PI) Daniel Chasman (WGHS co-PI) Julie Buring (WHS PI) I-Min Lee (WHS co-PI) Christine Albert Michele Albert Nancy Cook Brendan Everett Kathryn Hall Tobias Kurth Samia Mora Nina Paynter Aruna Pradhan Kathy Rexrode Debra Schaumberg Robert 7ee

DPM fellows/scientists

Shafqat Ahmad Tunde Akinkuolie Audrey Chu David Conen Christina Ellervik Franco Giulianini Amit Khera MV Moorthy Patrick Lawler Guillaume Pare Lynda Rose Marty Vandenburgh Yau Hua Yu

NHS/HPFS collaborators

Marilyn Cornelis Ming Ding Fran Grodstein Chunyan He Frank Hu Tao Huang David Hunter Peter Kraft Po-Ru Loh Alkes Price Lu Qi Qibin Qi Bjarni Vilhjalmsson Tiange Wang Noah Zaitien

WHS/WGHS participants

Funding NIH NHLBI (HL043851, HL080467) NCI (CA047988, UM1CA182913 Amgen Donald W. Reynolds Found.

Chromosome 16q12 (FTO locus)

Association at *FTO* not in LD with BMI associated SNP

Replication

- rs10163409 for carbohydrate intake, P_{CHARGE}=0.34
- Association driven by WGHS in DietGen, β (se): 0.55(0.09), P_{WGHS} =5.7x10⁻⁹
- Without WGHS, β(se): 0.20(0.14), P_{noWGHS}=0.15

Meta-analysis repropulation stratification 4 [0.29, 0.59]

• Region (US v₂ Europe)

Percentage for tal energy intake from carbohydrates(%)

- Menopause status
- Sex