

SCHOOL OF PUBLIC HEALTH Department of Nutrition

Branched-chain and aromatic amino acids and T2D in the PREDIMED Study

Miguel Ruiz-Canela, PharmD, MPH, PhD

www.unav.es/preventiva WWW.predimedplus.com www.ciberobn.es

Outline

1.Introduction

2.Methods

3.Results

4. Discussion/Conclusion

Branched-chain amino acids (BCAA)

Phenylalanine

Tyrosine

Plasma Amino Acid Levels and Insulin Secretion in Obesity

Philip Felig, M.D., Errol Marliss, M.D., and George F. Cahill, Jr., M.D. N Engl J Med 1969; 281:811-816 | October 9, 1969 | DOI: 10.1056/NEJM196910092811503

Relationship between insulin resistance and amino acids in women and men

Ryan Seibert¹, Fahim Abbasi¹, Feras M. Hantash², Michael P. Caulfield², Gerald Reaven¹ & Sun H. Kim¹

© 2015 The Authors. *Physiological Reports* published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Tianlu Chen^{1,*}, Yan Ni^{2,*}, Xiaojing Ma³, Yuqian Bao^{1,3}, Jiajian Liu¹, Fengjie Huang¹, Cheng Hu^{1,3}, Guoxiang Xie², Aihua Zhao¹, Weiping Jia^{1,3} & Wei Jia^{1,2}

SCIENTIFIC REPORTS | 6:20594 | DOI: 10.1038/srep20594

Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations

Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis

Marta Guasch-Ferré,^{1,2,3} Adela Hruby,¹ Estefanía Toledo,^{3,4} Clary B. Clish,⁵ Miguel A. Martínez-González,^{3,4} Jordi Salas-Salvadó,^{2,3} and Frank B. Hu^{1,6,7}

Diabetes Care 2016;39:833-846 | DOI: 10.2337/dc15-2251

Relative Risk for Type 2 Diabetes

	Isoleuc				
Study	Cases/Total Population		RR (95%)	% Weight	
FHS,Wang et al.2011	189/378	-	1.70 (1.27, 2.28)	8.51	Nested case-control
MDC,Wang et al.2011	163/326	_	1.37 (0.95, 1.98)	5.51	
KORA S4, Wang-Sattler et al. 2012	2 91/182		1.73 (1.15, 2.60)	4.50	Nested case-control
EPIC,Floegel et al.2013	800/3082		1.30 (1.18, 1.44)	50.93	Case cohort, n=3,082
SABRE-European, Tillin et al. 2015	5 113/688		1.21 (0.97, 1.51)	14.27	Cohort $p = 688 / 1.007$
SABRE-South Asian, Tillin et al. 20	227/1007	+	1.42 (1.16, 1.74)	16.29	Conort, II-088 / 1,007
Overall (I-squared = 9.5%, p = 0.	356)	0	1.36 (1.24, 1.48)	100.00	
NOTE: Weights are from random	effects analysis				
	.11 .25 .5	1 2 4	9		

Background

Discussion/Conclusion

Gaokun Qiu,¹ Yan Zheng,² Hao Wang,¹ Jie Sun,³ Hongxia Ma,³ Yang Xiao,¹ Yizhun Li,¹ Yu Yuan,¹ Handong Yang,⁴ Xiulou Li,⁴ Xinwen Min,⁴ Ce Zhang,⁴ Chengwei Xu,⁴ Yue Jiang,³ Xiaomin Zhang,¹ Meian He,¹ Ming Yang,¹ Zhibin Hu,³ Huiru Tang,^{5,6} Hongbing Shen,³ Frank B. Hu,² An Pan¹* and Tangchun Wu¹* International Journal of Epidemiology, 2016, 1–10

Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults

Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS

Metabolite	Chemical class	Compound ID		VIP	p value	Trend ^a	Association		AUC ^b	
		METLIN	HMDB				OR (95% CI)	FDR	Low	High
2-Aminooctanoic acid	Amino acid	5923	00991	1.39	0.003	Down	0.69 (0.51, 0.93)	0.016	0.733	0.779
Aminomalonic acid	Amino acid	58024	01147	3.50	< 0.001	Up	2.03 (1.48, 2.78)	< 0.001	0.733	0.808
Glycine	Amino acid	20	00123	3.67	< 0.001	Up	2.66 (1.72, 4.12)	< 0.001	0.731	0.798
Isoleucine	Amino acid	23	00172	1.50	0.002	Up	1.44 (1.07, 1.93)	0.015	0.725	0.768
Leucine	Amino acid	24	00687	1.50	0.002	Up	1.44 (1.07, 1.93)	0.015	0.725	0.768
Ornithine	Amino acid	27	00214	1.20	0.001	Down	0.63 (0.45, 0.88)	0.007	0.738	0.783
Phosphoserine	Amino acid	297	00272	1.71	0.033	Down	0.74 (0.57, 0.96)	0.023	0.748	0.771
Proline	Amino acid	29	00162	5.54	< 0.001	Down	0.44 (0.30, 0.66)	< 0.001	0.728	0.850
Serine	Amino acid	30	00187	1.32	0.013	Down	0.68 (0.48, 0.94)	0.022	0.743	0.765
Threonine	Amino acid	32	00167	1.80	< 0.001	Up	1.53 (1.16, 2.02)	0.003	0.732	0.780
Valine	Amino acid	35	00883	1.78	< 0.001	Up	1.66 (1.21, 2.26)	0.001	0.731	0.766

Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis

Metabolite	N _{T2D} / N _{controls}		RR (95% CI)	P-value
	1,992 / 4,319		1.35 (1.25, 1.45)	6.9 x 10 ⁻¹⁵
Isoleucine	25,208 / 209,575		1.44 (1.22, 1.71)	2.0 x 10 ⁻⁵
	25,208 / 209,575	_	1.44 (1.26, 1.65)	9.5 x 10 ⁻⁸
	1,192 / 2,037		1.37 (1.22, 1.53)	9.4 x 10 ⁻⁸
Leucine	30,169 / 215,523		- 1.73 (1.28, 2.34)	3.4 x 10⁴
	30,169 / 215,523		— 1.85 (1.41, 2.42)	7.3 x 10 ⁻⁶
	1,192 / 2,037		1.35 (1.25, 1.46)	5.0 x 10 ⁻¹⁴
Valine	30,169 / 215,523		1.45 (1.18, 1.77)	3.4 x 10⁻⁴
	30,169 / 215,523		1.54 (1.28, 1.84)	4.2 x 10 ⁻⁶
	.5 .66 1	1.5 2	D	олл1 <i>К</i>
	Type 2 diabetes risk			ene

OR of type 2 diabetes per 1 SD genetically-predicted increase in metabolite levels from Mendelian randomisation using independent genetic variants

Background

Limitations in previous studies

- Did not used <u>repeated measurements over time</u> of these amino-acids
- No evaluation about how <u>dietary interventions can</u> <u>influence changes</u> in the levels of these plasma aminoacids and the risk of disease

Hypotheses

- Baseline plasma levels of BCAA and AA are directly associated with a higher subsequent risk of developing T2D;
- 2) 1-year changes in the plasma levels of these amino-acids are associated with a higher subsequent risk of developing T2D;
- An intervention with a Mediterranean diet can attenuate the direct association between baseline plasma levels of these amino-acids and the risk of developing T2D;
- 4) A **Mediterranean diet** intervention **during one year time** is able to reduce the plasma levels of these amino-acids.

DESIGN Case-cohort study

Flow-chart of the case-cohort design

Background

Metabolomic analysis

- Blood samples in EDTA tubes: from Spain to Boston
- Metabolite profiling of 137 metabolites:
- hydrophilic interaction liquid chromatography (HILIC)-positive with tandem Mass Spectrometry (Broad Institute)

Individual AAs and scores

Statistical analysis

• *Weighted* Cox regression models (Barlow weights)

Model 1: **age** (years), **sex** (male, female), **intervention group** (MedDiet+EVOO, MedDiet+nuts) (stratified by recruitment center)

Model 2: *Model 1* + **body mass index** (kg/m²), **smoking** (never, current, former), **leisure-time physical activity** (metabolic equivalent tasks in minutes/day), **dyslipidemia** and **hypertension**

Model 3: *Model 2* + **baseline fasting glucose** (mean + quadratic term of glucose centered mean)

Baseline participants characteristics

	Subcohorta	Cases	
n	694	251	
Age (years)	66.5 (5.7)	66.4 (5.7)	
Sex (% women),	62.8	55.0	
Intervention group, %			
MedDiet+EVOO	30.7	29.9	
MedDiet+nuts	37.2	33.9	
Control	32.1	36.3	
Hypertension, %	90.8	96.0	
Dyslipidemia, %	85.0	79.7	
Smoking, %			
Never	61.0	52.6	
Former	22.6	22.3	
Current	16.4	25.1	
Waist circumference, cm	99.0 (10.7)	103.4 (10.0)	
Body mass index, kg/m ²	29.9 (3.6)	30.8 (3.3)	
Physical activity, METs/d	238 (238)	249 (232)	
Education, %			
Elementary or lower	75.4	76.5	
Secondary or higher	24.6	23.5	
Total energy intake, kcal/d	2277 (566)	2327 (622)	
Mediterranean diet ^b	8.6 (1.9)	8.5 (1.8)	
Glucose, mg/dl ^c	99.7 (15.2)	117.2 (17.6)	

Incident type 2 diabetes by Baseline Plasma Amino Acid Concentrations^a

Joint effect of MedDiet and baseline BCAA score

Changes in BCAA and AA scores after 1 Year of Intervention, by Intervention Group.

Background

Methods

Changes in individual AAs after 1 Year of Intervention, by Intervention Group.

Associations of 1-yr changes (per SD) in BCAA and AA score with the risk of incident type 2 diabetes stratified by intervention group

One-year Change of HOMA-IR Index 95% confidence intervals by Quartiles of Baseline Plasma Branched-Chain

Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting

Background

Discussion/Conclusion

PLOS Medicine | DOI:10.1371/journal.pmed.1002179 November 29, 2016

Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis **Obesity and inflammation down-regulate** expression of genes linked to BCAA metabolism selectively in adipose tissue and cultured adipocytes

Obesity and inflammation down-regulate expression of genes linked to BCAA metabolism selectively in adipose tissue and cultured adipocytes

Yan Zheng,¹ Yanping Li,¹ Qibin Qi,² Adela Hruby,¹ JoAnn E. Manson,^{3,4,5} Walter C. Willett,^{1,3,4} Brian M. Wolpin,⁶ Frank B. Hu^{1,3,4} and Lu Qi^{1,7}*

International Journal of Epidemiology, 2016, 1–11

Cumulative consumption of **branched-chain** amino acids and incidence of type 2 diabetes

Conclusions

1) Baseline BCAAs and AA scores were *independently* associated with a higher risk of incident T2D after a median follow-up of 3.8 years;

2) One-year changes in BCAAs were associated with a higher risk of subsequently developing T2D (during years 2 to 7 of follow-up) <u>only in the control group</u> of the trial, but not in the active intervention groups receiving MedDiets, and this differential association was supported by <u>statistically significant interactions</u> for each of the 2 active intervention groups;

3) The intervention with the MedDiet+EVOO was associated with <u>1-year *significant reductions*</u> in leucine, isoleucine and the overall BCAA score.

Thank you very much!

mcanela@unav.es

