Metabolomics and other omics of diabetes

Thomas J. Wang, MD Friesinger Professor of Medicine Chief, Division of Cardiovascular Medicine Physician-in-Chief, Vanderbilt Heart and Vascular Institute

Overview

- Rationale
- Targeted mass spec analyses and DM
- Non-targeted approaches

Modest benefit of conventional biomarkers for identifying who will develop cardiovascular disease

Biomarkers of CV risk CRP Fibrinogen D-dimer PAI-1 Homocysteine BNP ANP Renin Aldosterone Albumin excretion Total and HDL cholesterol

Wang et al, NEJM 2006

Wang, Circulation 2011 Figure, courtesy of M Pencina

Biomarkers are often correlated with each other

- Examples
 - CRP and fibrinogen (r=0.5), CRP and D-dimer
 (r=0.3), CRP and PAI-1 (r=0.3)

• Little clinical value in measuring multiple biomarkers that capture the same information -- for instance, from the same biological pathway

Using novel technologies to find "uncorrelated" biomarkers

From Gerszten and Wang, Nature 2008

Targeted LC/MS/MS

Targeted approach using LC-MS/MS Metabolite "address": elution time, MS characterization

From R Gerszten

Comparison of results from stored FHS samples and fresh MIT samples (OGTT), in healthy normals

Shaham et al, Mol Syst Biol 2008

Targeted mass spec: 3 screens

From E. Rhee

Screen #1 identifies 5 metabolites associated with incident DM

Metabolite	P-value	Odds ratio for individuals in the top quartile*
isoleucine	<0.0001	3.14 (CI, 1.51-6.55)
phenylalanine	<0.0001	2.28 (CI, 1.00-5.20)
tyrosine	<0.0001	2.82 (Cl <i>,</i> 1.25-6.34)
leucine	0.0005	3.66 (CI, 1.61-8.29)
valine	0.001	3.14 (Cl <i>,</i> 1.43-6.86)

*adjusted for age, sex, BMI, glucose

Similar results even when restricting to individuals who took 12 years to develop diabetes

Wang et al, Nature Medicine 2011

Baseline amino acid levels predict above and beyond insulin measures, OGTT

Isoleucine	Leucine	Valine	Tyrosine	Phenylalanine
Adjusted od	ds ratios, per SD i	ncrement in metal	oolite (95% confide	nce interval)
1.68 (1.26-2.23)	1.54 (1.17-2.03)	1.39 (1.11-1.74)	1.56 (1.18-2.06)	1.70 (1.28-2.25)
1.63 (1.22-2.17)	1.51 (1.14-2.00)	1.36 (1.08-1.71)	1.52 (1.14-2.02)	1.69 (1.27-2.24)
1.63 (1.22-2.17)	1.51 (1.15-2.00)	1.36 (1.08-1.71)	1.52 (1.15-2.02)	1.69 (1.27-2.24)
1.63 (1.22-2.17)	1.51 (1.14-2.00)	1.35 (1.08-1.71)	1.52 (1.14-2.01)	1.69 (1.27-2.24)
1.58 (1.18-2.12)	1.46 (1.10-1.93)	1.33 (1.06-1.68)	1.49 (1.13-1.98)	1.68 (1.27-2.24)
	Isoleucine Adjusted od 1.68 (1.26-2.23) 1.63 (1.22-2.17) 1.63 (1.22-2.17) 1.63 (1.22-2.17) 1.58 (1.18-2.12)	Isoleucine Leucine Adjusted odds ratios, per SD i 1.68 (1.26-2.23) 1.54 (1.17-2.03) 1.63 (1.22-2.17) 1.51 (1.14-2.00) 1.63 (1.22-2.17) 1.51 (1.15-2.00) 1.63 (1.22-2.17) 1.51 (1.14-2.00) 1.63 (1.22-2.17) 1.51 (1.14-2.00) 1.58 (1.18-2.12) 1.46 (1.10-1.93)	IsoleucineLeucineValineAdjusted odds ratios, per SD iscrement in metals1.68 (1.26-2.23)1.54 (1.17-2.03)1.39 (1.11-1.74)1.63 (1.22-2.17)1.51 (1.14-2.00)1.36 (1.08-1.71)1.63 (1.22-2.17)1.51 (1.15-2.00)1.36 (1.08-1.71)1.63 (1.22-2.17)1.51 (1.14-2.00)1.35 (1.08-1.71)1.63 (1.22-2.17)1.51 (1.14-2.00)1.35 (1.08-1.71)1.63 (1.22-2.17)1.51 (1.14-2.00)1.35 (1.08-1.71)1.63 (1.22-2.17)1.51 (1.14-2.00)1.35 (1.08-1.71)	IsoleucineLeucineValineTyrosineAdjusted odds ratios, per SD iscrement in metablite (95% confider1.68 (1.26-2.23)1.54 (1.17-2.03)1.39 (1.11-1.74)1.56 (1.18-2.06)1.63 (1.22-2.17)1.51 (1.14-2.00)1.36 (1.08-1.71)1.52 (1.14-2.02)1.63 (1.22-2.17)1.51 (1.15-2.00)1.36 (1.08-1.71)1.52 (1.15-2.02)1.63 (1.22-2.17)1.51 (1.14-2.00)1.35 (1.08-1.71)1.52 (1.14-2.01)1.63 (1.22-2.17)1.51 (1.14-2.00)1.35 (1.08-1.71)1.52 (1.14-2.01)1.58 (1.18-2.12)1.46 (1.10-1.93)1.33 (1.06-1.68)1.49 (1.13-1.98)

Amino acid score and risk of future diabetes

	Isoleucine, Phenylalanine, Tyrosine		
Model	Discovery (FHS) 12 year follow-up N=378		
1 st quartile	1.0 (referent)		
2 nd quartile	3.48 (1.68 – 7.23)		
3 rd quartile	2.82 (1.25 - 6.34)		
4 th quartile	5.99 (2.34 – 15.34)		
P for trend	0.0009		

Adjusted for age, sex, BMI, fasting glucose

Wang et al, Nature Medicine 2011

Amino acid score and risk of future diabetes

	Isoleucine, Phenylalanine, Tyrosine			
Model	Discovery (FHS) 12 year follow-up N=378	Replication (Malmo) 13 year follow-up N=326		
1 st quartile	1.0 (referent)	1.0 (referent)		
2 nd quartile	3.48 (1.68 – 7.23)	2.08 (0.97-4.46)		
3 rd quartile	2.82 (1.25 - 6.34)	2.59 (1.09-6.15)		
4 th quartile	5.99 (2.34 – 15.34)	3.93 (1.54-10.04)		
P for trend	0.0009	0.006		

Adjusted for age, sex, BMI, fasting glucose

Wang et al, Nature Medicine 2011

How helpful is the clinical information provided by metabolites?

	C-statistic (AUC)
Genotype score	0.641
Metabolite score	0.803
Clinical risk factors	0.856
Clinical + metabolites + genotype	0.880*

p=0.002 vs. clinical risk factors alone

Framingham Offspring Study (n=1,622, 13-year follow up)

Walford et al, Diabetes Care 2014

Contribution of metabolites to DM prediction (EPIC-Potsdam study)

Are the BCAAs playing a causal role?

Newgard, Cell Metab 2012 Yoon, Nutrients 2016

Physical activity, diet, and amino acids (Framingham)

		· ·
	Cases (n = 189)	Matched controls (n = 189)
Physical activity index	35 ± 6.2	2 35 ± 7.3
Total caloric intake, kcal	$1,982 \pm 66$	0 1,866 ± 600
Total protein intake, g	82 ± 28	78 ± 28
Phenylalanine intake, g	3.6 ± 1.2	3.4 ± 1.3
Tyrosine intake, g	3.0 ± 1.0	2.8±1.1
Leucine intake, g	6.5 ± 2.2	6.1 ± 2.3
Isoleucine intake, g	3.9 ± 1.3	3.7 ± 1.4
Valine intake, g	4.3 ± 1.5	4.1 ± 1.5

No significant correlations of amino acids with FFQ variables or physical activity index

Rhee et al, Cell Metabolism 2013

BCAAs: genetic determinants

Lotta et al PLoS Med 2016

BCAA and DM: Mendelian randomization analyses

Metabolite	N _{T2D} / N _{controls}		RR (95% CI)	P-value
	1,992 / 4,319	-	1.35 (1.25, 1.45)	6.9 x 10 ⁻¹⁵
Isoleucine	25,208 / 209,575		1.44 (1.22, 1.71)	2.0 x 10 ⁻⁵
	25,208 / 209,575		1.44 (1.26, 1.65)	9.5 x 10 ⁻⁸
	1,192 / 2,037		1.37 (1.22, 1.53)	9.4 x 10 ⁻⁸
Leucine	30,169 / 215,523		1.73 (1.28, 2.34)	3.4 x 10-4
	30,169 / 215,523		1.85 (1.41, 2.42)	7.3 x 10 ⁻⁶
	1,192 / 2,037		1.35 (1.25, 1.46)	5.0 x 10 ⁻¹⁴
Valine	30,169 / 215,523		1.45 (1.18, 1.77)	3.4 x 10 ⁻⁴
	30,169 / 215,523		1.54 (1.28, 1.84)	4.2 x 10 ⁻⁶
	5 66	1 15 2		
	Type 2 d	iabetes risk		

Lotta et al PLoS Med 2016

Impact of surgical and medical weight loss on BCAAs

Laferrere et al, Sci Transl Med 2011

Targeted mass spec: 3 screens

From E. Rhee

Screen #2 identifies 2-aminoadipate as a predictor of diabetes risk

Metabolite	Paired T-statistic	P-value
2-aminoadipate	3.39	0.0009
quinolinate	2 53	0.0121
PEP	2.49	0.0138
UDP-galactose/UDP-glucose	2.42	0.0164
hippurate	-2.19	0.0294
F1P/F6P/G1P/G6P	2.24	0.0265
beta-hydroxybutyrate	-1.95	0.0529
UDP	1.91	0.0583
3-methyladipate	-1.85	0.0657
salicylurate	1.77	0.0780
isocitrate	1.61	0.11
alpha alwaranhacahate	1 59	0.12

Wang et al, JCI 2013

2-aminoadipic acid and risk of future DM

	2-aminoadipic acid			
Model	Framingham Heart Study (188 cases, 188 controls) 12-year follow-up	Malmö Diet and Cancer (162 cases, 162 controls) 13-year follow-up	Combined sample (350 cases, 350 controls)	
As continuous variable				
Per SD increment	1.60 (1.19-2.16)	1.57 (1.15-2.14)	1.59 (1.28-1.97)	
Р	0.002	0.004	<0.0001	
As categorical variable				
1 st quartile	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)	
2 nd quartile	1.34 (0.72-2.49)	2.19 (1.07-4.48)	1.66 (1.05-2.63)	
3 rd quartile	1.71 (0.82-3.54)	1.45 (0.68-3.07)	1.56 (0.93-2.61)	
4 th quartile	4.49 (1.86-10.89)	3.96 (1.63-9.59)	4.12 (2.22-7.65)	
P for trend	0.001	0.01	< 0.0001	

2-aminoadipic acid is a product of lysine degradation

- In FHS, moderately correlated with lysine (r = 0.38), insulin (r = 0.25), and HOMA-IR (r=0.24), but not lysine intake
- Only modest correlation with BCAA or aromatic amino acids (r<0.2)

Genetic regulation of 2-AAA metabolism: animal and human data

DHTKD1 variants and plasma 2-AAA (Framingham): p=0.04-0.05

DHTKD1 variants and type 2 DM (DIAGRAM consortium): p=0.007

Wu et al, Cell 2014

2-AAA feeding modulates fasting glucose

2-AAA levels are enriched in the pancreas

2-AAA enhances insulin secretion

Inter-individual variability in 2-AAA:Lysine at baseline and preserved over time

Jane Ferguson

Overview

- Rationale
- Targeted mass spec analyses and DM
- Non-targeted approaches

Human Metabolome

the local state and state and state and state and state
The second
The second second the second that the second s
EASTER THE PROPERTY OF THE PARTY OF THE PART
The second secon
A DAY TO THE A DAY AND A DAY
A SAME IF MARKED AND AND AND AND A SAME
A STATE AND A STAT
The state of the second st
The second secon
and the second s
Stratute Presses and a strategy and
SECOND STRUCT SECOND 2 2 August 10
2210000
ALTERNATION IN THE ARGENTING INCOMENTS TRANSPORT THE MALE
The second secon
and the second s
and the second s
All and a second a
THE TO LEAD & STALL MARKET PERSON AND THE ADDRESS OF A DATE AND
AND T THE PARTY AND
The second secon
A REAL PROPERTY AND A REAL
A STATE OF
- THE REPORT OF LAST AND ADDRESS AND ADDRESS ADDRE
A REAL PROPERTY AND A REAL
Read String to 1999 According to 1999 and 1999
The second
The second
the second
and the second s
TANKER - CONTRACT TOTAL TRANSPORT AND
AND REAL PROOF INTRODUCE INTRODUCE INTRODUCE AND
THERE IN A REAL PROPERTY AND AND AND AND A REAL PROPERTY AND A REA
and the second of the second s
Anterna and a second the reality for the second the second
the second is successive the second s
The second
AND THE PARTY AND THE TAR THE TOTAL STORE THE PARTY AND TH
TINK BACK, and send a state of the send of
Manager
The second
THE REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL P
and a second s

Initial experience with non-targeted approach in Framingham

- 1,000 Framingham Gen 3 participants
- HILIC chromatography/ positive ion mode MS on QExactive (hybrid method)
- ~7,000 total peaks
- ~5,000 peaks were observed in >80% of individuals
- 987 "factors"

Gerszten and Clish (Broad Institute)

Unique phenotyping in Framingham Gen 3

~250 unknown peaks associated with hepatic fat by CT

With Caroline Fox

Top metabolites associated with liver fat by CT (Framingham)

		m/z	RT	P Value	
<	1	202.1185	7.79	2.28E-24	>
	2	551.5034	1.61	5.49E-22	
	3	386.2536	1.99	1.53E-18	
	4	606.6179	1.66	3.17E-17	
	5	612.5556	1.63	1.88E-16	
	6	578.5864	1.66	2.50E-16	
	7	634.6491	1.65	3.80E-16	
	8	116.1073	7.87	4.16E-16	
	9	223.9720	7.77	1.20E-14	
	10	313.2733	1.63	1.55E-14	

O'Sullivan et al

GWAS of the unknown metabolite reveals association with *AGXT2* locus

Novel metabolite is associated with NASH, and decreases with surgical weight loss

Biopsy-Proven NASH Cohort

Age-, sex- and BMI-matched

Novel metabolite (DMGV) is associated with future diabetes

- FHS (4 yr follow-up)
 - 20 incident cases of DM
 - 1.8-fold increase per SD, p = 0.00045
- MDC (12.6 yr follow-up)
 - 196 incident cases of DM
 - 1.6-fold increase per SD, p = 0.0008

Publicly-available metabolomic data from FHS

Data available on dbGAP (>2,500)

Nat Medicine 2011 JCI 2011a, 2011b Circulation 2012 Diabetes 2012 Cell Metabolism 2013a, 2013b

Metabolomics in multi-ethnic cohorts

- Diabetes Prevention Program
 - Walford, Florez, Ma, Temprosa
- Shanghai Women's and Men's Health Study
 - Shu, Zheng
- Southern Community Cohort Study
 - Lipworth-Elliot, Blot
- Jackson Heart Study
 - Wilson

Other omics?

Acknowledgments

Harvard Medical School Robert Gerszten Eugene Rhee Jennifer Ho Mark Berenson Debbie Ngo Jose Florez Geoff Walford

<u>Framingham Heart Study</u> Vasan Ramachandran Martin Larson Daniel Levy Emelia Benjamin

Broad Institute Clary Clish

Jackson Heart Study James Wilson

DPP Research Group Yong Ma Ella Temprosa Vanderbilt Epidemiology Center Xiao Ou Shu (SMHS) Wei Zheng (SWHS) Loren Lipworth-Eliot (SCCS) Bill Blot (SCCS)

Vanderbilt Center for Translational and Clinical Cardiovascular Research (VTRACC) Justin Bachmann Evan Brittain Jeff Carr Matt Freiberg Jane Ferguson Frank Harrell Deepak Gupta Dan Munoz Cassandra Reynolds Ben Shoemaker Quinn Wells Michelle York

International Olle Melander Martin Magnusson