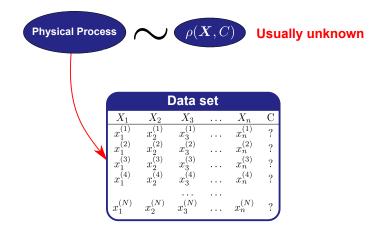
Guzmán Santafé

Spatial Statistics Group Public University of Navarre

DATAI-UNAV, November 2022

Outline of the Tutorial

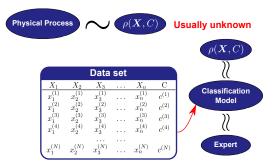


Introduction

Classification Problem

Introduction

Classification Problem

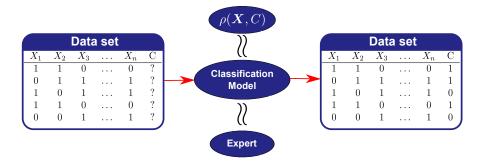

		Data	set		
X_1	X_2	X_3		X_n	С
$x_1^{(1)}$	$x_2^{(1)}$	$x_3^{(1)}$		$x_{n}^{(1)}$	$c^{(1)}$
$x_{1}^{(2)}$	79)	$x_{3}^{(2)}$		$x_{n}^{(2)}$	$c^{(2)}$
$x_1^{(3)}$	$x_2^{(2)} \\ x_2^{(3)}$	$x_{3}^{(3)}$		$x_{n}^{(3)}$	$c^{(3)}$
$x_1^{(4)}$	$x_2^{(4)}$	$x_3^{(4)}$		$x_n^{(4)}$	$c^{(4)}$
$x_1^{(N)}$	$x_2^{(N)}$	$x_3^{(N)}$		$x_n^{(N)}$	$c^{(N)}$

Introduction

Supervised Classification

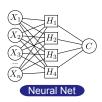
Learning from Experience

- "Automate the work of the expert"
- Tries to model $\rho(\mathbf{X}, \mathbf{C})$

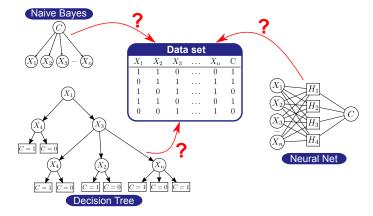


Introduction

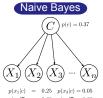

Supervised Classification


Classification Model

Classifier labels new data (unknown class value)

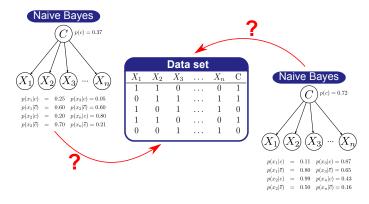


Many classification paradigms



• Which is the best paradigm for a classification problem?

Many parameter configurations



 $\begin{array}{rcl} p(x_1|\overline{c}) &=& 0.60 \quad p(x_3|\overline{c}) = 0.60 \\ p(x_2|c) &=& 0.20 \quad p(x_n|c) = 0.80 \\ p(x_2|\overline{c}) &=& 0.70 \quad p(x_n|\overline{c}) = 0.21 \end{array}$

		Data	a set		
X_1	X_2	X_3		X_n	С
1	1	0		0	1
0	1	1		1	1
1	0	1		1	0
1	1	0		0	1
0	0	1		1	0

• Which is the best parameter configuration for a classification problem?

Honest Evaluation

- Need to know the goodness of a classifier
- Methodology to evaluate classifiers

Evaluating classification performance

- Quality measures (Scores)
- Estimate value of a score (Estimation methods)
- Comparing different solutions (Statistical tests?)

Score

Function that provides a quality measure for a classifier when solving a classification problem

But ... what does best quality mean?

- What are we interested in?
- What do we want to optimize?
- Characteristics of the problem
- Characteristics of the data set

Different kinds of scores

Scores

Binary classification problem

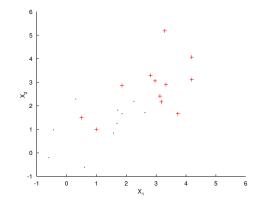
- Non-balanced scores:
 - Accuracy/Classification error
 - Recall
 - Specificity
 - Precision
- Balanced scores:
 - Balanced accuracy
 - F-Score
 - "ROC curve / AUC"
 - Kappa coefficient

Multiclass classification problem

- Non-balanced scores:
 - Accuracy/Classification error
- Balanced scores:
 - Kappa coefficient
- It is possible to addapt scores from binary classification using O.vs.A approach

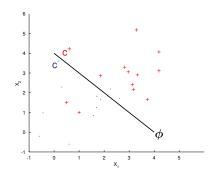
Scores

Confusion Matrix


Binary classification problem								
			Pred	liction				
			c +	С-	Total			
	lal	c +	TP	FP	N +			
	Actual	C ⁻	FN	ΤN	N -			
		Total	Â/+	Ñ−	N			

Confusion Matrix

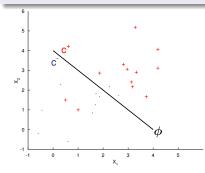
Multiclass classification problem


		<i>C</i> 1	<i>C</i> ₂	<i>C</i> 3	 Cn	Total
	<i>C</i> 1	TP ₁	<i>FN</i> ₁₂	<i>FN</i> ₁₃	 FN _{1n}	N ₁
ы	<i>C</i> ₂	FN_{21}	TP ₂	FN_{23}	 FN _{2n}	N ₂
Actual	<i>C</i> 3	<i>FN</i> ₃₁	FN ₃₂	TP_3	 FN _{3n}	<i>N</i> ₃
	Cn	FN _{n1}	FN _{n2}	FN _{n3}	 TPn	Nn
	Total	Ŵ ₁	Ν ₂	Âγ ₃	 Ν̂n	Ν

Binary classification Problem - Example

<i>X</i> ₁	<i>X</i> ₂	C
3.1	2.4	c +
1.7	1.8	<i>c</i> -
3.3	5.2	c +
2.6	1.7	c -
1.8	2.9	<i>c</i> +
0.3	2.3	<i>c</i> -

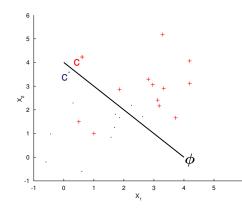
Binary classification Problem - Example



		Pred	diction	
		C +	с-	Total
Actual	C +	10	2	12
Ac	c -	2	8	10
	Total	12	10	22

Accuracy/Classification Error

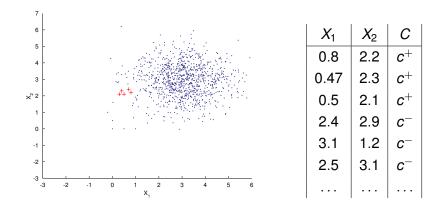
Definition


Data samples classified correctly/incorrectly

		Pred	diction	
		Total		
Actual	c +	10	2	12
Ă	с-	2	8	10
	Total	12	10	22

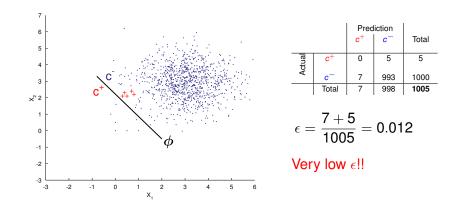
 $\epsilon(\phi) = p(\phi(\boldsymbol{X}) \neq \boldsymbol{C}) = \boldsymbol{E}_{\rho(\boldsymbol{X},\boldsymbol{c})}[1 - \delta(\boldsymbol{c},\phi(\boldsymbol{X}))]$

Accuracy/Classification Error

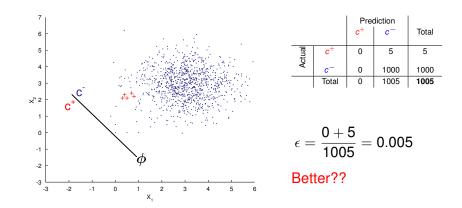


		Pred		
		c +	c_	Total
Actual	c+	10	2	12
A	c-	2	8	10
	Total	12	10	22

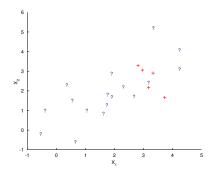
$$\epsilon = \frac{FP + FN}{N}$$
$$= \frac{2+2}{22} = 0.182$$


Low $\epsilon!!$

Skew Data


Scores

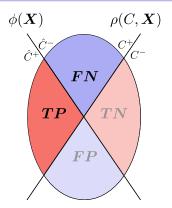
Skew Data - Classification Error



Scores

Skew Data - Classification Error

Positive Unlabeled Learning

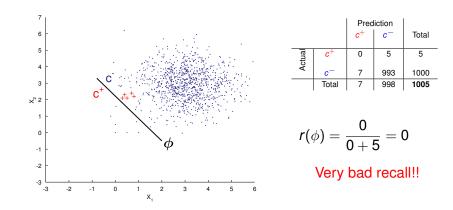


Positive Labeled Data

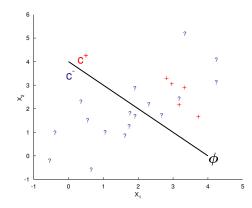
- Only positive samples labeled
- Many unlabeled samples:
 - Positive?
 - Negative?
- Classification error is useless

Recall

Definition Fraction of positive class samples correctly classified Other names { True positive rate Sensitivity


$$r(\phi) = \frac{TP}{TP + FN} = \frac{TP}{P}$$

Definition Based on Probabilities


$$r(\phi) = p(\phi(\mathbf{x}) = \mathbf{c}^+ | \mathbf{C} = \mathbf{c}^+) = E_{\rho(\mathbf{x}|\mathbf{C} = \mathbf{c}^+)}[\delta(\phi(\mathbf{x}), \mathbf{c}^+)]$$

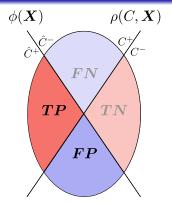
Scores

Skew Data - Recall

Positive Unlabeled Learning - Recall

		Predi c ⁺	ction c [?]	Total
Actual	<i>c</i> +	0	5	5
Ac	c?	7	10	1
	Total	12	10	22

$$r(\phi) = \frac{5}{0+5} = 1$$

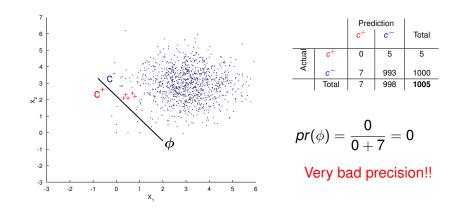

It is possible to calculate recall in positive-unlabeled problems

Precision

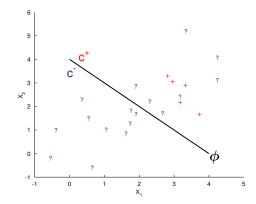
Definition

 Fraction of data samples classified as c⁺ which are actually c⁺

$$pr(\phi) = \frac{TP}{TP + FP} = \frac{TP}{\hat{P}}$$



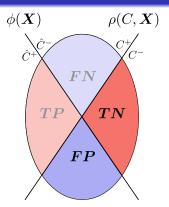
Definition Based on Probabilities


$$pr(\phi) = p(C = c^+ | \phi(\mathbf{x}) = c^+) = E_{
ho(\mathbf{x}|\phi(\mathbf{x})=c^+)}[\delta(\phi(\mathbf{x}), c^+)]$$

Scores

Skew Data - Precision

Positive Unlabeled Learning - Precision

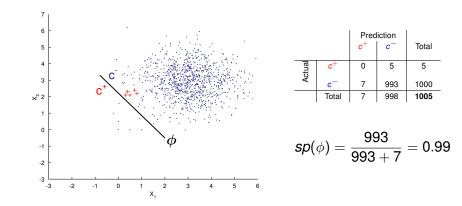


- Precision is not a good score for positive-unlabeled data samples
- Not all the positive samples are labeled

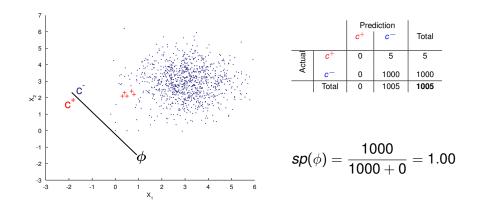
Specificity

Definition

- Fraction of negative class samples correctly identified
- Specificity = 1 FalsePositiveRate



$$sp(\phi) = rac{TN}{TN + FP} = rac{TN}{N}$$


Definition Based on Probabilities

$$sp(\phi) = p(\phi(\mathbf{x}) = c^{-}|C = c^{-}) = E_{\rho(\mathbf{x}|C = c^{-})}[1 - \delta(\phi(\mathbf{x}), c^{-})]$$

Skew Data - Specificity

Skew Data - Specificity

Balanced Scores

Balanced accuracy rate

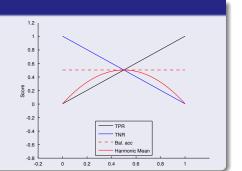
Bal.
$$acc = \frac{1}{2} \left(\frac{TP}{P} + \frac{TN}{N} \right) = \frac{recall + specificity}{2}$$

Balanced error rate

$$Bal. \ \epsilon = \frac{1}{2} \left(\frac{FP}{P} + \frac{FN}{N} \right)$$

Skew Data

• Bal. $acc = \frac{1}{2} \left(\frac{0}{5} + \frac{993}{1000} \right) \approx 0.5$ • Bal. $\epsilon = \frac{1}{2} \left(\frac{7}{7} + \frac{5}{1000} \right) \approx 0.5$


Balanced Scores

•
$$F - Score = \frac{(\beta^2 + 1) Precision Recall}{\beta^2(Precision + Recall)}$$

•
$$F_1 - Score = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} \longrightarrow Harmonic Mean$$

Harmonic Mean

- Maximized with balanced components
- Bal. $acc \rightarrow arithmetic$ mean

Balanced Scores

• Kappa coefficient: chance corrected proportion of correct classifications.

$$\kappa = rac{Acc. - P_e}{1 - P_e},$$
 with $P_e = rac{N^+}{N} \cdot rac{\hat{N}^+}{N} + rac{N^-}{N} \cdot rac{\hat{N}^-}{N}$

Skew Data

		Prediction c ⁺ c ⁻		Total	
Actual	c+	0	5	5	
∢	c-	7	993	1000	
	Total	7	998	1005	

•
$$Acc = \frac{993}{1005} \approx 0.988$$

• $P_e \frac{5}{1005} \cdot \frac{7}{1005} + \frac{1000}{1005} \cdot \frac{998}{1005} \approx 0.988$

k ≈ 0

Estimating classification performance

Scores

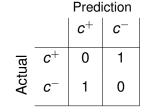
Classification Cost

All misclassifications cannot be equally considered

E.g. Medical Diagnosis Problem

It does not have the same cost diagnosing a healthy patient as ill rather than diagnosing an ill patient as healthy

Classification Model

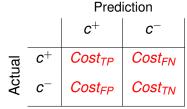

May be of interest to minimize the expected cost instead the classification error

Dealing with Classification Cost

Loss Function

Associate an economic/utility/etc. cost to each classification.

- Typical loss function in classification \rightarrow 0/1 Loss
- We can use cost matrix to specify the associated cost:

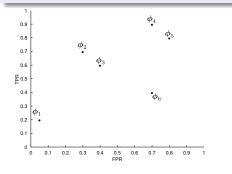


Dealing with Classification Cost

Loss Function

Associate an economic/utility/etc. cost to each classification.

- Typical loss function in classification \rightarrow 0/1 Loss
- We can use cost matrix to specify the associated cost:

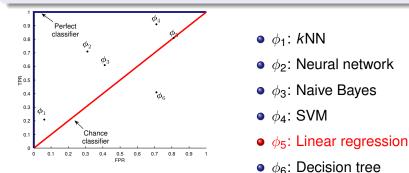


Usually not easy to give an associated cost

Receiver Operating Characteristics (ROC)

ROC Space

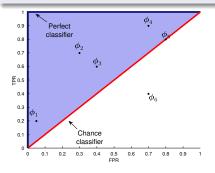
Coordinate system used for visualizing classifiers performance where *TPR* is plotted on the *Y* axis and *FPR* (1 - especificity) is plotted on the *X* axis.



- φ₁: kNN
- φ₂: Neural network
- ϕ_3 : Naive Bayes
- φ₄: SVM
- ϕ_5 : Linear regression
- ϕ_6 : Decision tree

Receiver Operating Characteristics (ROC)

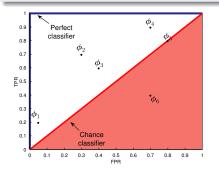
ROC Space


Coordinate system used for visualizing classifiers performance where *TPR* is plotted on the *Y* axis and *FPR* (1 - especificity) is plotted on the *X* axis.

Receiver Operating Characteristics (ROC)

ROC Space

Coordinate system used for visualizing classifiers performance where *TPR* is plotted on the *Y* axis and *FPR* (1 - especificity) is plotted on the *X* axis.

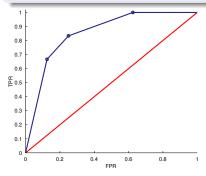


- *φ*₁: *k*NN
- ϕ_2 : Neural network
- Φ₃: Naive Bayes
- φ₄: SVM
- ϕ_5 : Linear regression
- ϕ_6 : Decision tree

Receiver Operating Characteristics (ROC)

ROC Space

Coordinate system used for visualizing classifiers performance where *TPR* is plotted on the *Y* axis and *FPR* (1 - especificity) is plotted on the *X* axis.

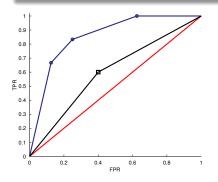


- φ₁: kNN
- φ₂: Neural network
- ϕ_3 : Naive Bayes
- φ₄: SVM
- ϕ_5 : Linear regression
- ϕ_6 : Decision tree

Receiver Operating Characteristics (ROC)

ROC Curve

For a probabilistic/fuzzy classifier, a ROC curve is a plot of the TPR vs. FPR (1- especificity) as its discrimination threshold is varied



p(c ⁺ x)	<i>T</i> = 0.2	<i>T</i> = 0.5	<i>T</i> = 0.8	С
0.99	c ⁺	c ⁺	c+ c+	c+
0.90	c+	c ⁺	c+	c+
0.85	c+	c+ c+ c+	c+	c+
0.80	$egin{array}{ccc} c^+ & \ c^$	c^+ c^+	c ⁺	c-
0.78	c ⁺	c ⁺	c-	c+
0.70	c+	c +	c-	c-
0.60	c+	c+	c_	c+
0.45	c+	c_	c_	c
0.40	c+	c-	c-	c-
0.30	c+ c+	c_	c-	c_
0.20	c ⁺	c-	c_	c+
0.15	c-	c-	c- c-	c-
0.10	c_	c-	c_	c-
0.05	c_	c_	c-	c-

Receiver Operating Characteristics (ROC)

ROC Curve

For a crisp classifier a ROC curve can be obtained by interpolation from a single point

p(c ⁺ x)	T = 0.2	<i>T</i> = 0.5	<i>T</i> = 0.8	С
0.99	c+	c ⁺	c+	c+
0.90	c+	c ⁺	c+	c+
0.85	c+	c+	$egin{array}{c} c^+ \ c^+ \ c^+ \ c^+ \end{array}$	c+
0.80	c ⁺	c ⁺	c ⁺	c
0.78	$egin{array}{ccc} c^+ & c^+ $	$c^+ \ c^+ \ c^+ \ c^+ \ c^+ \ c^+ \ c^+$	c-	c+
0.70	c+	c+	c-	c-
0.60	c ⁺	c ⁺	c_	c ⁺
0.45	$egin{array}{c} c^+ \ c^+ \ c^+ \ c^+ \ c^+ \end{array}$	c ⁻ c ⁻ c ⁻	c- c- c-	c-
0.40	c+	c-	c-	c
0.30	c ⁺	c_	c_	c
0.20	c+	c	c	с- с+
0.15	c-	с- с-	c-	c-
0.10	c-	c_	c-	c
0.05	c	c_	c-	c

Receiver Operating Characteristics (ROC)

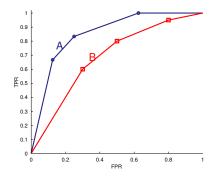
ROC Curve

- Insensitive to skew class distribution
- Insensitive to misclassification cost

Dominance Relationship

A ROC curve A dominates another ROC curve B if A is always above and to the left of B in the plot

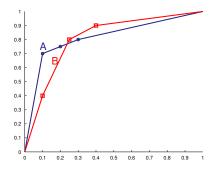
Receiver Operating Characteristics (ROC)


ROC Curve

- Insensitive to skew class distribution
- Insensitive to misclassification cost

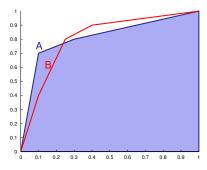
Dominance Relationship

A ROC curve *A* dominates another ROC curve *B* if *A* is always above and to the left of *B* in the plot


Receiver Operating Characteristics (ROC)

Dominance

- A dominates B throughout all the range of T
- A has a better predictive performance over any condition of cost and class distribution


Receiver Operating Characteristics (ROC)

No-Dominance

- The dominance relationship may not be so clear
- No model is the best one in any possible scenario

Receiver Operating Characteristics (ROC)

Caution!! AUC may treats

misclassification cost differently for each classification algorithm (Hand 2009, 2010, Hand & Anagnostopoulos 2013)

Area Under ROC Curve

- If A dominates B:
 AUC(A) ≥ AUC(B)
- If A does not dominate B AUC "cannot identify the best classifier"
- Less sensitive to skew class distribution than Acc.
- Less sensitive to misclassification cost than Acc.

- Most of the presented scores are for binary classification
- A generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction						
		<i>c</i> 1	c ₂	<i>c</i> 3		Cn	Total		
	C1	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	P ₁		
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂		
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P_3		
A									
	cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn		
	Total	Ŷ1	Ŷ2	Ŷ3		₽ _n			

c ₁ vs. All (score ₁)
• TP
• TN
• FN
• FP

- Most of the presented scores are for binary classification
- A generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction						
		<i>c</i> 1	c ₂	<i>c</i> 3		Cn	Total		
	C1	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	P ₁		
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂		
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P_3		
A									
	cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn		
	Total	Ŷ1	Ŷ2	Ŷ3		₽ _n			

c ₁ vs. All (score ₁)
• TP
• TN
• FN
• FP

- Most of the presented scores are for binary classification
- A generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction						
		<i>c</i> 1	c ₂	<i>c</i> 3		Cn	Total		
	C1	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁		
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂		
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P_3		
A									
	cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn		
	Total	Ŷ1	Ŷ2	Ŷ3		₽ _n			

c ₁ vs. All (score ₁)
• TP
• TN
• FN
• FP

- Most of the presented scores are for binary classification
- A generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction						
		<i>c</i> 1	c ₂	<i>c</i> 3		Cn	Total		
	C1	TP ₁	<i>FN</i> ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁		
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂		
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P_3		
A									
	cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn		
	Total	Ŷ1	Ŷ2	Ŷ3		₽ _n			

c ₁ vs. All (score ₁)
• TP
• TN
• FN
• FP

- Most of the presented scores are for binary classification
- A generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction					
		<i>c</i> 1	c ₂	<i>c</i> 3		Cn	Total	
	C1	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	P ₁	
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂	
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P_3	
A								
	cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn	
	Total	Ŷ1	Ŷ2	Ŷ3		₽ _n		

c ₁ vs. All (score ₁)				
• TP				
• TN				
• FN				
• <i>FP</i>				

- Most of the presented scores are for binary classification
- A generalization to multilabel is possible
 - E.g. One-vs-All approach

		Prediction					
		C1	<i>c</i> 2	<i>c</i> 3		Cn	Total
Actual	C1	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁
	c ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂
	<i>c</i> 3	FN ₃₁	FN ₃₂	TP3		FN _{3n}	P_3
	Cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn
	Total	Ŷ ₁	Ŷ2	Ŷ3		Ρ _n	

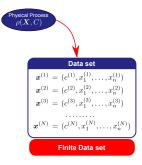
c ₁ vs. All (score ₁)				
• TP				
• TN				
• FN				
• FP				

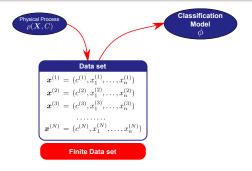
$$score_{TOT} = \sum_{i=1}^{n} score_i \cdot p(c_i)$$

The Use of a Specific Score Depends on:

- Application domain
- Characteristics of the problem
- Characteristics of the data set
- Our interest when solving the problem
- etc.

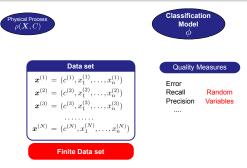
Estimation Methods





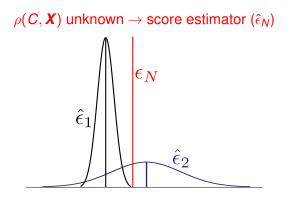
4 Comparing different solutions

- Select a score to measure the quality
- We would like to calculate the true value of the score
- Limited information is available: only estimations are possible


- Select a score to measure the quality
- We would like to calculate the true value of the score
- Limited information is available: only estimations are possible

- Select a score to measure the quality
- We would like to calculate the true value of the score
- Limited information is available: only estimations are possible

- Select a score to measure the quality
- We would like to calculate the true value of the score
- Limited information is available: only estimations are possible

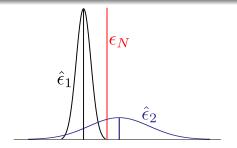


True Value - ϵ_N

Expected value of the score for a classifier trained on a set of *N* data samples sampled from $\rho(C, X)$

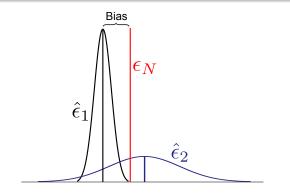
True Value - ϵ_N

Expected value of the score for a classifier trained on a set of *N* data samples sampled from $\rho(C, X)$



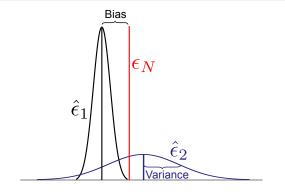
True Value

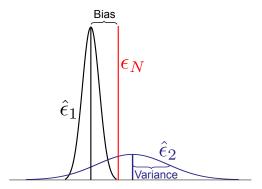
Expected value of the score given $\rho(C, X)$


Apparent Value - point estimate

A value of the score obtained from a set of instances sampled from $\rho(C, \mathbf{X})$

Bias

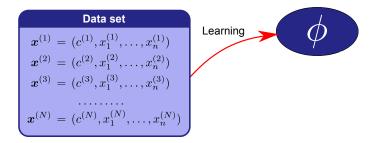

Average difference between the estimate and its true value: $E_{\rho}[\hat{\epsilon}_N] - \epsilon_N$


Variance

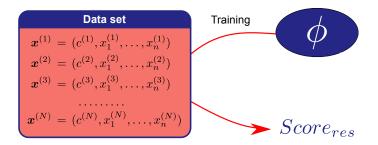
Deviation of the estimated value from its expected value:

 $var(\hat{\epsilon}_N) = E[(\hat{\epsilon}_N - E_{\rho}[\hat{\epsilon}_N])^2]$

- Bias and variance depend on the estimation method
- Trade-off between bias and variance needed


Estimating classification performance Estimation Methods

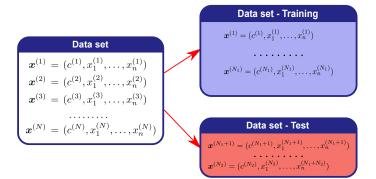
Introduction


Data set
$\boldsymbol{x}^{(1)} = (c^{(1)}, x_1^{(1)}, \dots, x_n^{(1)})$
$\boldsymbol{x}^{(2)} = (c^{(2)}, x_1^{(2)}, \dots, x_n^{(2)})$
$\boldsymbol{x}^{(3)} = (c^{(3)}, x_1^{(3)}, \dots, x_n^{(3)})$
$\boldsymbol{x}^{(N)} = (c^{(N)}, x_1^{(N)}, \dots, x_n^{(N)})$

- Finite data set to train and estimate the score
- Several choices depending on how this data set is dealt with

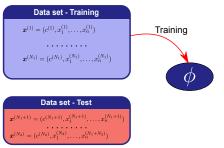
Resubstitution

Resubstitution

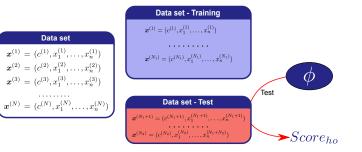


Resubstitution

Classification Error Estimation


- The simplest estimation method
- Biased estimation \(\epsilon\) Biased
- Smaller variance
- Too optimistic (overfitting problem)
- Bad estimator

Hold-Out

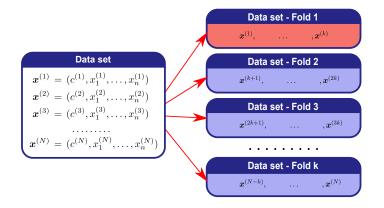


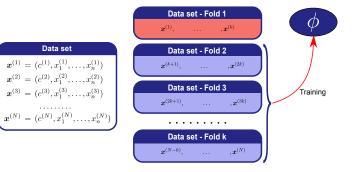
Hold-Out

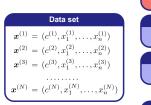
	Data set
$x^{(1)}$	$= (c^{(1)}, x_1^{(1)}, \dots, x_n^{(1)})$
$x^{(2)}$	$= (c^{(2)}, x_1^{(2)}, \dots, x_n^{(2)})$
$x^{(3)}$	$= (c^{(3)}, x_1^{(3)}, \dots, x_n^{(3)})$
$x^{(N)}$	$= (c^{(N)}, x_1^{(N)}, \dots, x_n^{(N)})$

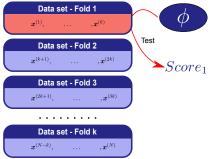
Hold-Out

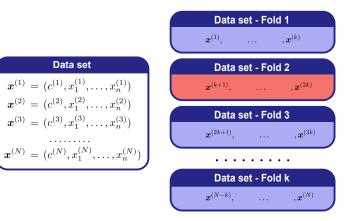
Classification Error Estimation

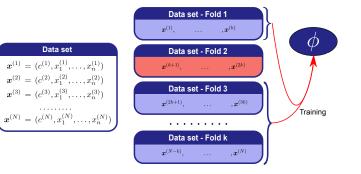

- Large bias (pessimistic estimation of the true classification error)
- Bias and variance are related to N₁ and N₂

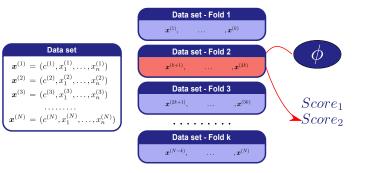

Repeated Hold-Out

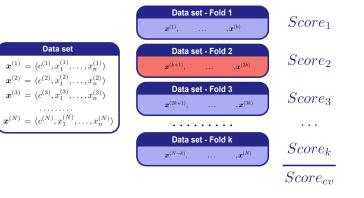

- Repeat the Hold-Out t-times
- Simple average over results


Classification Error Estimation


- Same bias as standard Hold-Out
- Reduces the variance with respect to the Hold-Out





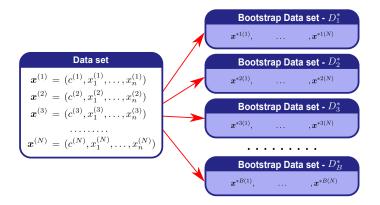


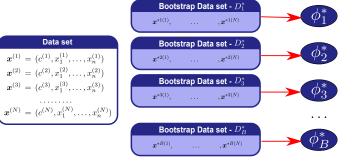
Estimating classification performance

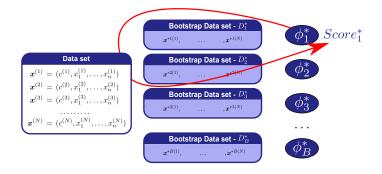
Estimation Methods

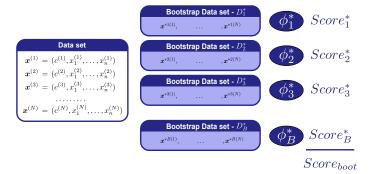
k-Fold Cross-Validation

Classification Error Estimation


- Biased estimation of ϵ_N
- Smaller bias than Hold-Out


Repeated *k*-Fold Cross-Validation


- Similar to repeated Hold-Out:
 - Repeat Cross-Validation t-times
 - Simple average over results


Classification Error Estimation

- Same bias as standard *k*-fold Cross-Validation
- Reduces the variance with respect *k*-fold Cross-Validation

Classification Error Estimation

- Biased estimation of the classification error
- Variance improved because of resampling
- Uses for testing part of the data used for learning
- "Similar to resubstitution"
- Problem of overfitting

Improvement: Leaving-one-out bootstrap

Leaving-One-Out Bootstrap

- Mimics Cross-Validation
- Each ϕ_i is tested on D/D_i^*

Tries to Avoid the Overfitting Problem

- Expected number of distinct samples on bootstrap data set $\approx 0.632N$
- Similar to repeated Hold-Out
- Biased upwards:
 - Tends to be a pessimistic estimation of the score

Bias correction terms can be used for error estimation

Bootstrap

- Improves bias estimation
- Well established methods

Hold-Out/Cross-Validation

- Several proposals
- Improves bias estimation
- Not very extended in practice

0.632 Bootstrap (
$$\hat{\epsilon}_{boot}^{.632}$$
)

$$\hat{\epsilon}_{boot}^{.632}=0.368\hat{\epsilon}_{res}+0.632\hat{\epsilon}_{loo-boot}$$

Improvement

- Tries to balance optimism (resubstitution) and pessimism (loo-bootstrap)
- Works well with "light-fitting" classifiers
- With overfitting classifiers $\hat{\epsilon}_{boot}^{632}$ is still too optimistic

0.632+ Bootstrap ($\hat{\epsilon}_{boot}^{.632+}$) - (Efron & Tibshirani, 1997)

- Correct bias when there is great amount of overfitting
- Based on the non-information error rate (γ):

$$\hat{\gamma} = \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(\boldsymbol{c}_i, \phi_{\boldsymbol{x}}(\boldsymbol{x}_j)) / N^2$$

Uses the relative overfitting to correct the bias:

$$\hat{R} = rac{\hat{\epsilon}_{\textit{loo-boot}} - \hat{\epsilon}_{\textit{res}}}{\hat{\gamma} - \hat{\epsilon}_{\textit{res}}}$$

0.632+ Bootstrap (
$$\hat{\epsilon}_{boot}^{.632+}$$
) - (Efron & Tibshirani, 1997)
 $\hat{\epsilon}_{boot}^{.632} = (1 - \hat{w})\hat{\epsilon}_{res} + \hat{w}\hat{\epsilon}_{loo-boot}$

•
$$\hat{W} = \frac{0.632}{1-0.638\hat{R}}$$

•
$$\hat{\gamma} = \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(\mathbf{c}_i, \phi_{\mathbf{x}}(\mathbf{x}_j) / N^2)$$

•
$$\hat{R} = rac{\hat{\epsilon}_{loo-boot} - \hat{\epsilon}_{res}}{\hat{\gamma} - \hat{\epsilon}_{res}}$$

Corrected Hold-Out (
$$\hat{\epsilon}_{ho}^+$$
) - (Burman, 1989)

$$\hat{\epsilon}_{ho}^{+} = \hat{\epsilon}_{ho} + \hat{\epsilon}_{res} - \hat{\epsilon}_{ho-N}$$

Where

- $\hat{\epsilon}_{ho} = \text{standard Hold-Out estimator}$
- $\hat{\epsilon}_{res} = resubstitution error$
- $\hat{\epsilon}_{ho-N} = \phi$ learned on Hold-Out learning set but tested on *D*.

Corrected Hold-Out $(\hat{\epsilon}_{ho}^+)$ - (*Burman, 1989*)

$$\hat{\epsilon}_{ho}^{+} = \hat{\epsilon}_{ho} + \hat{\epsilon}_{res} - \hat{\epsilon}_{ho-N}$$

Improvement

•
$$Bias_{\hat{\epsilon}_{ho}} \approx Cons_0 \frac{N_2}{N_1 \cdot N_2}$$

•
$$Bias_{\hat{\epsilon}_{ho}^+} \approx Cons_1 \frac{N_2}{N_1 \cdot N^2}$$

Corrected Cross-Validation ($\hat{\epsilon}_{cv}^+$) - (*Burman, 1989*)

$$\hat{\epsilon}_{cv}^{+} = \hat{\epsilon}_{cv} + \hat{\epsilon}_{res} - \hat{\epsilon}_{cv-N}$$

Improvement

•
$$Bias_{\hat{\epsilon}_{cv}} \approx Cons_0 \frac{1}{(k-1)\cdot \Lambda}$$

•
$$Bias_{\hat{\epsilon}_{cv}^+} \approx Cons_1 rac{1}{(k-1)\cdot N^2}$$

Improving the Estimation - Variance

Stratification

- Keeps the proportion of each class in the train/test data
 - Hold-Out: Stratified splitting
 - Cross-Validation: Stratified splitting
 - Bootstrap: Stratified sampling

May improve the variance of the estimation

Improving the Estimation - Variance

Repeated Methods

- Applicable to Hold-Out and Cross-Validation
- Bootstrap already includes sampling

Repeated Hold-Out/Cross-Validation

- Repeat estimation process *t*-times
- Simple average over results

Classification Error Estimation

Same bias as standard estimation methods

Reduces the variance with respect Hold-Out/Cross-Validation

...

Estimation Methods

• Which estimation method is better?

May Depend on Many Aspects

- The size of the data set
- The classification paradigm used
- The stability of the learning algorithm
- The characteristics of the classification problem
- The bias/variance/computational cost trade-off

Estimation Methods

• Which estimation method is better?

Large Data Sets

- Hold-out may be a good choice
 - Computationally not so expensive
 - Larger bias but depends on the data set size

Smaller Data Sets

- Repeated Cross-Validation
- (Bootstrap 0.632)

Estimation Methods

• Which estimation method is better?

Small Data Sets

- Bootstrap and repeated Cross-Validation may not be very informative
- Permutation test (Ojala & Garriga, 2010):
 - Can be used to ensure the validity of the estimation
- Confidence intervals (Isaksson et al., 2008):
 - May provide more reliable information about the estimation

Estimating classification performance

Comparing different solutions

Comparing different solutions

- Statistical test?
- A a controversial statistical tool
- Often criticized due to a misuse of it
- It is not perfect, but can be useful
- Important undertand methodology and limitations
- More information: see Santafé et al. 2015

- A. Urkullu, A. Pèrez, and B. Calvo (2019). On the evaluation and selection of classifier learning algorithms with crowdsourced data. *Applied Soft Computing Journal,* 80:832-844
- B. Calvo and G. Santafé (2016). SCMAMP: Statistical comparison of multiple algorithms in multiple problems. *R Journal*, 8(1):248-256
- G. Santafé, J. A. Lozano, and I. Inza (2015). Dealing with the evaluation of supervised classification algorithms. *Artificial Intelligence Review*, 44:467-508
- Japkowicz, N. and Shah, M. (2011). Evaluating Learning Algorithms: A Classification Perspective. *Cambridge: Cambridge University Press*

Estimating classification performance

Comparing different solutions

Estimating classification performance

Guzmán Santafé

Spatial Statistics Group Public University of Navarre

DATAI-UNAV, November 2022

