

FACULTY OF COMPUTER SCIENCE UNIVERSITY OF THE BASQUE COUNTRY

Broadening the Horizon of Adversarial Attacks in Deep Learning

Jon Vadillo

Work coauthored by Roberto Santana and Jose A. Lozano

April 2023

Overview

Deep Learning

Identity recognition

Self-driving vehicles

Prediction: Police van

Original Input

Adversarial Perturbation

Prediction: Printer

Adversarial Example

Taxonomy

Type of misclassification

Scope of the perturbation

Resources available to the adversary

Taxonomy

Type of misclassification

Untargeted Attack

Adv. Example

Scope of the perturbation

Resources available to the adversary Targeted Attack

Taxonomy

Scope of the perturbation

Original Input

Individual Perturbation

Adv. Example

Taxonomy

Type of misclassification

Scope of the perturbation

Resources available to the adversary

Original Input

Universal Perturbation

Taxonomy

Type of misclassification

White-box scenario

Scope of the perturbation

Resources available to the adversary

Black-box scenario

Taxonomy

Type of misclassification

Untargeted Targeted

Scope of the perturbation

Individual Universal

Resources available Black-box to the adversary White-box

Attack Methods

Fast Gradient Sign Method

$$x' = x + \epsilon \cdot \operatorname{sign}\left(\nabla \mathcal{L}(x, y_c, f)\right)_{\frac{Prediction \, loss}{Gradient \, sign}}$$

Where
$$f(x) = y_c$$

 $f: \mathbb{R}^d \to \{y_1, y_2, \dots, y_k\}$

(Goodfellow et al., 2014). Explaining and harnessing adversarial examples. ICLR

Attack Methods

Projected Gradient Descent

$$x'_{[i+1]} = \mathcal{B}^{x}_{\epsilon} \left(x'_{[i]} + \alpha \cdot \operatorname{sign}\left(\nabla \mathcal{L}(x'_{[i]}, y_{c}, f)\right) \right)_{\text{Prediction loss}}$$

Where
$$f(x) = y_c$$

 $f: \mathbb{R}^d \to \{y_1, y_2, \dots, y_k\}$

(Madry et al., 2018). Towards deep learning models resistant to adversarial attacks. ICLR

Generating Adversarial Examples

DeepFool

Generating Adversarial Examples

Source class: y_c

Boundary estimation (class y_j):

Distance:
$$\frac{|f'_{j}|}{||w'_{j}||_{2}} = \frac{|\hat{f}(x'_{[i]})_{j} - \hat{f}(x'_{[i]})_{c}|}{||\nabla \hat{f}(x'_{[i]})_{j} - \nabla \hat{f}(x'_{[i]})_{c}||_{2}}$$

Generating Adversarial Examples

Extending Adversarial Attacks to Produce Adversarial Class Probability Distributions

J. Vadillo, R. Santana, J. A. Lozano. (2023). Journal of Machine Learning Research, volume 23, pp. 1-42.

'Single-instance' attack paradigm Focus on individual inputs (isolatedly): x

'Single-instance' attack paradigm Focus on individual inputs (isolatedly): x

'Multiple-instance' attack paradigm Consider multiple-inputs (coordinatedly): $\{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\}$

'Single-instance' attack paradigm Focus on individual inputs (isolatedly): x

'Multiple-instance' attack paradigm Consider multiple-inputs (coordinatedly): $\{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\}$

Objective: Develop an attack method $\Phi(x)$ capable of:

1.

2.

'Single-instance' attack paradigm Focus on individual inputs (isolatedly): x

'Multiple-instance' attack paradigm Consider multiple-inputs (coordinatedly): $\{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\}$

Objective: Develop an attack method $\Phi(x)$ capable of: 1. Producing misclassifications: $f(\Phi(x)) \neq f(x)$ 2.

'Single-instance' attack paradigm Focus on individual inputs (isolatedly): x

'Multiple-instance' attack paradigm Consider multiple-inputs (coordinatedly): $\{x^{(1)}, x^{(2)}, \ldots, x^{(n)}\}$

Objective: Develop an attack method $\Phi(x)$ capable of:

1. Producing misclassifications: $f(\Phi(x)) \neq f(x)$

2. Controlling the frequency with which each class is predicted: $P_{x \sim \mathcal{P}(X)} \left[f(\Phi(x)) = y_i \right] = \tilde{p}_i, \ 1 \leq i \leq k$

 $\widetilde{\mathcal{P}}(Y) = (\widetilde{p}_1, \dots, \widetilde{p}_k)$

Target distribution of the output classes

Motivation Representative use-cases:

- 1. Aggregated predictions are highly relevant (quantification...)
 - a. Collective information retrieval (opinion mining...)
 - b. Prevalence of a disease (epidemiology...)

Motivation Representative use-cases:

- 1. Aggregated predictions are highly relevant (quantification...)
 - a. Collective information retrieval (opinion mining...)
 - b. Prevalence of a disease (epidemiology...)

2. Fool the model several times preserving the source distribution

Motivation Representative use-cases:

- 1. Aggregated predictions are highly relevant (quantification...)
 - a. Collective information retrieval (opinion mining...)
 - b. Prevalence of a disease (epidemiology...)

2. Fool the model several times preserving the source distribution

Requirement: a targeted adversarial attack algorithm

Requirement: a targeted adversarial attack algorithm

Main objective:

$$T \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\ t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix}$$

Transition matrix

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c} \mathcal{P}(Y) \\ (p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\ t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = \widetilde{\mathcal{P}}(Y) \\ \begin{array}{c} \widetilde{\mathcal{P}}(Y) \\ = (\widetilde{p}_1, \dots, \widetilde{p}_k) \\ \end{array} \\ \begin{array}{c} \text{Source} \\ \text{distribution} \end{array} \\ \begin{array}{c} \text{Transition matrix} \\ \end{array} \end{array}$$

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c}
\mathcal{P}(Y) \\
(p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\
t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\
\vdots & \vdots & \ddots & \vdots \\
t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = \widetilde{\mathcal{P}}(Y) \\
\begin{array}{c}
\widetilde{\mathcal{P}}(Y) \\
= (\widetilde{p}_1, \dots, \widetilde{p}_k) \\
\begin{array}{c}
\mathsf{Target} \\
\mathsf{distribution}
\end{array}$$

Bounded perturbation $||x' - x|| \le \epsilon$

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c}
\mathcal{P}(Y) \\
(p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\
t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\
\vdots & \vdots & \ddots & \vdots \\
t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = \widetilde{\mathcal{P}}(Y) \\
= (\widetilde{p}_1, \dots, \widetilde{p}_k) \\
\begin{array}{c}
\mathsf{Source} \\
\mathsf{distribution} \\
\mathsf{Transition matrix} \\
\end{array}$$

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c}
\mathcal{P}(Y) \\
(p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\
t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\
\vdots & \vdots & \ddots & \vdots \\
t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = \widetilde{\mathcal{P}}(Y) \\
\begin{array}{c}
\widetilde{\mathcal{P}}(Y) \\
= (\widetilde{p}_1, \dots, \widetilde{p}_k) \\
\begin{array}{c}
\mathsf{Target} \\
\mathsf{distribution} \\
\end{array}$$

Bounded perturbation $||x' - x|| \le \epsilon \implies$ Some class transitions might not be feasible

Attack Given: process: x $f(x) = y_i$

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c} \mathcal{P}(Y) \\ (p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\ t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = (\widetilde{p}_1, \dots, \widetilde{p}_k) \\ \begin{array}{c} \mathbf{Source} \\ \mathbf{Source} \\ \mathbf{distribution} \end{array} \mathbf{Transition matrix} \mathbf{Target} \\ \end{array}$$

Bounded perturbation $||x' - x|| \le \epsilon \implies$ Some class transitions might not be feasible

Attack Given: Given: 1. Compute the set of "reachable" classes x $f(x) = y_i \qquad \qquad \mathcal{Y}$

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c}
\mathcal{P}(Y) \\
(p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\
t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\
\vdots & \vdots & \ddots & \vdots \\
t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = \widetilde{\mathcal{P}}(Y) \\
\begin{array}{c}
\widetilde{\mathcal{P}}(Y) \\
= (\widetilde{p}_1, \dots, \widetilde{p}_k) \\
\end{array}$$
Source distribution Transition matrix Target distribution

Attack Given: Given: 1. Compute the set of "reachable" classes
$$x$$
 $f(x) = y_i \qquad \qquad \mathcal{Y} \Rightarrow$

$$(t_{i,1},\ldots,t_{i,k})$$

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c} \mathcal{P}(Y) \\ (p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\ t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = (\widetilde{p}_1, \dots, \widetilde{p}_k) \\ \begin{array}{c} \mathbf{Source} \\ \mathbf{Source} \\ \mathbf{distribution} \end{array} \mathbf{Transition matrix} \mathbf{Target} \\ \end{array}$$

Requirement: a targeted adversarial attack algorithm

Main objective:

$$\begin{array}{c} \mathcal{P}(Y) \\ (p_1, \dots, p_k) \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,k} \\ t_{2,1} & t_{2,2} & \cdots & t_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k,1} & t_{k,2} & \cdots & t_{k,k} \end{pmatrix} = (\tilde{p}_1, \dots, \tilde{p}_k) \\ \begin{array}{c} \mathbf{Source} \\ \mathbf{Source} \\ \mathbf{distribution} \end{array} \mathbf{Transition matrix} \qquad \mathbf{Target} \\ \mathbf{distribution} \end{array}$$

Attack
process:Given:1. Compute the set of
"reachable" classes2. Normalize the probabilities
$$(t_{i,1}, \ldots, t_{i,k})$$
3. Select a target class
 $(t_{i,1}, \ldots, t_{i,k})$ x
 $f(x) = y_i$ \mathcal{Y} \checkmark $t'_{i,j} = \begin{cases} \frac{t_{i,j}}{\sum_{y_r \in \mathcal{Y}} t_{i,r}} & \text{if } y_j \in \mathcal{Y} \\ 0 & \text{else.} \end{cases}$ $(t'_{i,1}, \ldots, t'_{i,k})$

Generating transition matrices

$$\begin{array}{ll} \min & z = \sum_{i=1}^{k} t_{i,i} \\ \text{s.t.} & \sum_{j=1}^{k} t_{i,j} = 1 & \forall i \in \{1, \dots, k\} \\ & 0 \le t_{i,j} \le 1 & \forall i, j \in \{1, \dots, k\} \end{array} \right\} \text{T is a transition matrix} \\ & \mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y) \end{array}$$

Generating transition matrices

$$\begin{array}{ll} \min & z = \sum_{i=1}^{k} t_{i,i} \\ \text{s.t.} & \sum_{j=1}^{k} t_{i,j} = 1 & \forall i \in \{1, \dots, k\} \\ & 0 \le t_{i,j} \le 1 & \forall i, j \in \{1, \dots, k\} \\ & \mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y) & & \end{pmatrix} \text{T is a transition matrix} \\ \end{array}$$
Generating transition matrices

$$\begin{array}{ll} \min & z = \sum_{i=1}^{k} t_{i,i} \end{array} \right\} \text{ Maximize the fooling rate} \\ \text{s.t.} & \sum_{j=1}^{k} t_{i,j} = 1 & \forall i \in \{1, \dots, k\} \\ & 0 \leq t_{i,j} \leq 1 & \forall i, j \in \{1, \dots, k\} \\ & \mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y) \end{array} \right\} \text{ T is a transition matrix} \\ \end{array}$$

Generating transition matrices

$$\begin{array}{ll} \min & z = \sum_{i=1}^{k} t_{i,i} \end{array} \right\} \text{Maximize the fooling rate} \\ \text{s.t.} & \sum_{j=1}^{k} t_{i,j} = 1 & \forall i \in \{1, \dots, k\} \\ & 0 \leq t_{i,j} \leq 1 & \forall i, j \in \{1, \dots, k\} \\ & \mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y) & & \end{bmatrix} \text{T is a transition matrix} \\ \end{array}$$

Different solutions might produce different results in practice

Generating transition matrices

$$\begin{array}{ll} \min & z = \sum_{i=1}^{k} t_{i,i} \end{array} \right\} \text{ Maximize the fooling rate} \\ \text{s.t.} & \sum_{j=1}^{k} t_{i,j} = 1 & \forall i \in \{1, \dots, k\} \\ & 0 \leq t_{i,j} \leq 1 & \forall i, j \in \{1, \dots, k\} \\ & \mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y) \end{array} \right\} \text{ T is a transition matrix} \\ \end{array}$$

Different solutions might produce different results in practice Additional constraints to include information about the problem Four different methods proposed (+2 baselines)

Example: Upper-Bound Method (UBM)

Intuition: Prioritize those transitions that are feasible with higher frequency.

N inputs
per class
$$R = \begin{pmatrix} r_{1,1} & r_{1,2} & \dots, & r_{1,k} \\ r_{2,1} & r_{2,2} & \dots, & r_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ r_{k,1} & r_{k,2} & \dots, & r_{k,k} \end{pmatrix}$$
 $R' = \frac{1}{N}R$ $r_{i,j}$: Number of samples that can be

r_{i,j}: Number of samples that can be moved from the class *i* to the class *j*

Upper bound for the highest probability:

$$t_{i,j} \leq r'_{i,j} \quad \forall i,j \in \{1,\ldots,k\}$$

Example: Upper-Bound Method (UBM)
min
$$z = \sum_{i=1}^{k} t_{i,i}$$

s.t. $\sum_{j=1}^{k} t_{i,j} = 1$ $\forall i \in \{1, \dots, k\}$
 $0 \le t_{i,j} \le 1$ $\forall i, j \in \{1, \dots, k\}$
 $\mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y)$ $\}$ T produces the target distribution

Example: Upper-Bound Me	thod (UBM)	
$\min z = \sum_{i=1}^k t_{i,i}$		
s.t. $\sum_{j=1}^{k} t_{i,j} = 1$ $0 \le t_{i,j} \le 1$ $\mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y)$	$orall i \in \{1, \dots, k\}$ $orall i, j \in \{1, \dots, k\}$	<pre>} T is a transition matrix } T produces the target distribution</pre>
$t_{i,j} \leq r'_{i,j}$	$\forall i,j \in \{1,\ldots,k\}$	<pre>Avoid "excessively high" probabilities</pre>

Example: Upper-Bound Method (UBM)
min
$$z = \sum_{i=1}^{k} t_{i,i} + \sum_{i=1}^{k} \sum_{j=1}^{k} \eta_{i,j}$$

s.t. $\sum_{j=1}^{k} t_{i,j} = 1$ $\forall i \in \{1, \dots, k\}$
 $0 \le t_{i,j} \le 1$ $\forall i, j \in \{1, \dots, k\}$
 $\mathcal{P}(Y) \cdot T = \widetilde{\mathcal{P}}(Y)$ $\}$ T is a transition matrix
 $t_{i,j} \le r'_{i,j} + \eta_{i,j}$ $\forall i, j \in \{1, \dots, k\}$ $\}$ Avoid "excessively high" probabilities

Evaluation:

> 2 classification problems (**speech commands**, TSA):

Evaluation:

- > 2 classification problems (**speech commands**, TSA)
- > Different setups for the target distribution (**original**, random...)

Evaluation:

- > 2 classification problems (**speech commands**, TSA)
- > Different setups for the target distribution (original, **random**...)

Evaluation:

- > 2 classification problems (**speech commands**, TSA)
- Different setups for the target distribution (original, random...) \succ
- Multifactorial (fooling rate, KL-divergence, correlation...) \succ

Fooling rate (%)

(c)				0	()			
			Maximu	ım distoi	rtion am	ount (ϵ)		
	0.0005	0.001	0.0025	0.005	0.01	0.05	0.1	0.15
AM	3.80	11.17	31.58	46.98	62.36	87.29	92.31	94.69
UBM	0.45	2.88	19.06	38.03	57.89	87.05	92.28	94.68
EWTM	1.88	6.87	23.59	38.65	53.60	79.66	85.21	87.84
CRM	3.90	11.29	31.55	46.88	62.23	87.26	92.31	94.70
MAB	2.06	6.55	21.33	33.72	46.87	71.02	76.96	79.64
MFRB	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86
Max. FR	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86
	AM UBM EWTM CRM MAB MFRB Max. FR	0.0005 AM 3.80 UBM 0.45 EWTM 1.88 CRM 3.90 MAB 2.06 MFRB 3.93 Max. FR 3.93	0.0005 0.001 AM 3.80 11.17 UBM 0.45 2.88 EWTM 1.88 6.87 CRM 3.90 11.29 MAB 2.06 6.55 MFRB 3.93 11.47 Max. FR 3.93 11.47	Maximu 0.0005 0.001 0.0025 AM 3.80 11.17 31.58 UBM 0.45 2.88 19.06 EWTM 1.88 6.87 23.59 CRM 3.90 11.29 31.55 MAB 2.06 6.55 21.33 MFRB 3.93 11.47 32.02 Max. FR 3.93 11.47 32.02	Maximum distor 0.0005 0.001 0.0025 0.005 AM 3.80 11.17 31.58 46.98 UBM 0.45 2.88 19.06 38.03 EWTM 1.88 6.87 23.59 38.65 CRM 3.90 11.29 31.55 46.88 MAB 2.06 6.55 21.33 33.72 MFRB 3.93 11.47 32.02 47.44 Max. FR 3.93 11.47 32.02 47.44	Maximum distortion and 0.0005 0.001 0.0025 0.005 0.01 AM 3.80 11.17 31.58 46.98 62.36 UBM 0.45 2.88 19.06 38.03 57.89 EWTM 1.88 6.87 23.59 38.65 53.60 CRM 3.90 11.29 31.55 46.88 62.23 MAB 2.06 6.55 21.33 33.72 46.87 MFRB 3.93 11.47 32.02 47.44 62.80 Max. FR 3.93 11.47 32.02 47.44 62.80	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Μ

Ba

Results averaged for 100 random target distributions.

Evaluation:

- > 2 classification problems (**speech commands**, TSA)
- > Different setups for the target distribution (original, random...)
- > Multifactorial (fooling rate, KL-divergence, correlation...)
- > Multiple adversarial attack algorithms as component

	~			1	ooning n	uce (70)				
			Maximum distortion amount (ϵ)							
		0.0005	0.001	0.0025	0.005	0.01	0.05	0.1	0.15	
	AM	3.80	11.17	31.58	46.98	62.36	87.29	92.31	94.69	
Mothodo	UBM	0.45	2.88	19.06	38.03	57.89	87.05	92.28	94.68	
Methods	EWTM	1.88	6.87	23.59	38.65	53.60	79.66	85.21	87.84	
	CRM	3.90	11.29	31.55	46.88	62.23	87.26	92.31	94.70	
Basolinos	MAB	2.06	6.55	21.33	33.72	46.87	71.02	76.96	79.64	
Daseillies	MFRB	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86	
	Max. FR	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86	

Fooling rate (%)

Results averaged for 100 random target distributions.

50

Evaluation:

- 2 classification problems (**speech commands**, TSA) \succ
- Different setups for the target distribution (original, random...) \succ

- Multifactorial (fooling rate, KL-divergence, correlation...) \succ
- Multiple adversarial attack algorithms as component \succ

Our methods were capable of:

- > Closely approximating the target distributions
- Maintain a high fooling rate \succ

Fooling rate (%)

		Maximum distortion amount (ϵ)								
		0.0005	0.001	0.0025	0.005	0.01	0.05	0.1	0.15	
	AM	3.80	11.17	31.58	46.98	62.36	87.29	92.31	94.69	
Methods	UBM	0.45	2.88	19.06	38.03	57.89	87.05	92.28	94.68	
	EWTM	1.88	6.87	23.59	38.65	53.60	79.66	85.21	87.84	
	CRM	3.90	11.29	31.55	46.88	62.23	87.26	92.31	94.70	
Baselines	MAB	2.06	6.55	21.33	33.72	46.87	71.02	76.96	79.64	
	MFRB	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86	
	Max. FR	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86	

Results averaged for 100 random target distributions.

Evaluation:

- > 2 classification problems (**speech commands**, TSA)
- > Different setups for the target distribution (original, random...)
- > Multifactorial (fooling rate, KL-divergence, correlation...)
- Multiple adversarial attack algorithms as component

Our methods were capable of:

- Closely approximating the target distributions
- > Maintain a high fooling rate

No "best method" for all the factors considered:

➤ Fooling rate vs Similarity

Fooling rate (%)

	Maximum distortion amount (ϵ)										
	0.0005	0.001	0.0025	0.005	0.01	0.05	0.1	0.15			
AM	3.80	11.17	31.58	46.98	62.36	87.29	92.31	94.69			
UBM	0.45	2.88	19.06	38.03	57.89	87.05	92.28	94.68			
EWTM	1.88	6.87	23.59	38.65	53.60	79.66	85.21	87.84			
CRM	3.90	11.29	31.55	46.88	62.23	87.26	92.31	94.70			
MAB	2.06	6.55	21.33	33.72	46.87	71.02	76.96	79.64			
MFRB	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86			
Max. FR	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86			

Results averaged for 100 random target distributions.

52

Evaluation:

- > 2 classification problems (**speech commands**, TSA)
- > Different setups for the target distribution (original, random...)
- > Multifactorial (fooling rate, KL-divergence, correlation...)
- Multiple adversarial attack algorithms as component

Our methods were capable of:

- Closely approximating the target distributions
- > Maintain a high fooling rate

No "best method" for all the factors considered:

➤ Fooling rate vs Similarity

Fooling rate (%)

	Maximum distortion amount (ϵ)										
	0.0005	0.001	0.0025	0.005	0.01	0.05	0.1	0.15			
AM	3.80	11.17	31.58	46.98	62.36	87.29	92.31	94.69			
UBM	0.45	2.88	19.06	38.03	57.89	87.05	92.28	94.68			
EWTM	1.88	6.87	23.59	38.65	53.60	79.66	85.21	87.84			
CRM	3.90	11.29	31.55	46.88	62.23	87.26	92.31	94.70			
MAB	2.06	6.55	21.33	33.72	46.87	71.02	76.96	79.64			
MFRB	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86			
Max. FR	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86			

Results averaged for 100 random target distributions.

53

Evaluation:

- > 2 classification problems (**speech commands**, TSA)
- > Different setups for the target distribution (original, random...)
- > Multifactorial (fooling rate, KL-divergence, correlation...)
- Multiple adversarial attack algorithms as component

Our methods were capable of:

- Closely approximating the target distributions
- > Maintain a high fooling rate

No "best method" for all the factors considered:

➤ Fooling rate vs Similarity

Fooling rate (%)

	Maximum distortion amount (ϵ)										
	0.0005	0.001	0.0025	0.005	0.01	0.05	0.1	0.15			
AM	3.80	11.17	31.58	46.98	62.36	87.29	92.31	94.69			
UBM	0.45	2.88	19.06	38.03	57.89	87.05	92.28	94.68			
EWTM	1.88	6.87	23.59	38.65	53.60	79.66	85.21	87.84			
CRM	3.90	11.29	31.55	46.88	62.23	87.26	92.31	94.70			
MAB	2.06	6.55	21.33	33.72	46.87	71.02	76.96	79.64			
MFRB	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86			
Max. FR	3.93	11.47	32.02	47.44	62.80	87.54	92.48	94.86			

Results averaged for 100 random target distributions.

Contributions

- Novel multiple-instance attack paradigm:
 - Produce misclassifications for the incoming inputs
 - Control the probability distribution for the output classes
- Four different methods proposed
- Expose novel vulnerabilities in multiple scenarios and use-cases:
 - Adversarial label-drifts
 - Attacks less detectable in the long run

When and How to Fool Explainable Models (and Humans) With Adversarial Examples

J. Vadillo, R. Santana, J. A. Lozano. Under Review.

Þ

Input Output Explanation Scenario

Þ

•Regular attacks

Scenario 1: Only the input is observed

Undetectable Threats

Scenario 1: Only the input is observed

Undetectable Threats

Scenario 2: The output is shown to the user

Scenario 1: Only the input is observed

Undetectable Threats

Scenario 2: The output is shown to the user

Objective

How to generate **stealthy** and **realistic** adversarial attacks against explainable models (under human supervision):

- o Requirements
- Attack types
- Critical scenarios

Explanation methods

Local feature-based explanations

Prediction: Great Pyrenees

Prediction: COVID-19

Prediction: *Negative*The movie was absolutely awful!

Target class (y_t): $f(x') = y_t$

Target explanation (
$$\xi_t$$
): $g(x', f) = \xi_t$

Target class (y_t): $f(x') = y_t$

Target explanation (
$$\xi_t$$
): $g(x', f) = \xi_t$

Projected Gradient Descent

$$x'_{[i+1]} = \underbrace{\mathcal{B}^x_{\epsilon}}_{\epsilon} \left(x'_{[i]} - \alpha \cdot \operatorname{sign}\left(\nabla \mathcal{L}(x'_{[i]}, y_t, \xi_t, \tau, f) \right) \right)$$

Projection operator Attack loss

Target class (y_t **):** $f(x') = y_t$ **Target explanation (** ξ_t **):** $g(x', f) = \xi_t$

Projected Gradient Descent

$$x'_{[i+1]} = \mathcal{B}^x_{\epsilon} \left(x'_{[i]} - \alpha \cdot \operatorname{sign} \left(\nabla \mathcal{L}(x'_{[i]}, y_t, \xi_t, \tau, f) \right) \right)$$

Generalized attack loss

$$\mathcal{L}(x, y_t, \xi_t, \tau, f) = (1 - \tau) \cdot \mathcal{L}_{pred}(x, y_t, f) + \tau \cdot \mathcal{L}_{expl}(x, \xi_t, f)$$

Target class (y_t **):** $f(x') = y_t$ **Target explanation (** ξ_t **):** $g(x', f) = \xi_t$

Projected Gradient Descent

$$x'_{[i+1]} = \mathcal{B}^x_{\epsilon} \left(x'_{[i]} - \alpha \cdot \operatorname{sign} \left(\nabla \mathcal{L}(x'_{[i]}, y_t, \xi_t, \tau, f) \right) \right)$$

Generalized attack loss

$$\mathcal{L}(x, y_t, \xi_t, \tau, f) = (1 - \tau) \cdot \underbrace{\mathcal{L}_{pred}(x, y_t, f)}_{\text{Prediction loss}} + \tau \cdot \mathcal{L}_{expl}(x, \xi_t, f)$$

Prediction loss

Target class (y_t **):** $f(x') = y_t$ **Target explanation (** ξ_t **):** $g(x', f) = \xi_t$

Projected Gradient Descent

$$x'_{[i+1]} = \mathcal{B}^x_{\epsilon} \left(x'_{[i]} - \alpha \cdot \operatorname{sign} \left(\nabla \mathcal{L}(x'_{[i]}, y_t, \xi_t, \tau, f) \right) \right)$$

Generalized attack loss

$$\mathcal{L}(x, y_t, \xi_t, \tau, f) = (1 - \tau) \cdot \mathcal{L}_{pred}(x, y_t, f) + \tau \cdot \underbrace{\mathcal{L}_{expl}(x, \xi_t, f)}_{\text{Explanation loss}}$$

Target class (y_t **):** $f(x') = y_t$ **Target explanation (** ξ_t **):** $g(x', f) = \xi_t$

Projected Gradient Descent

$$x'_{[i+1]} = \mathcal{B}^x_{\epsilon} \left(x'_{[i]} - \alpha \cdot \operatorname{sign} \left(\nabla \mathcal{L}(x'_{[i]}, y_t, \xi_t, \tau, f) \right) \right)$$

Generalized attack loss

$$\mathcal{L}(x, y_t, \xi_t, \tau, f) = (1 - \tau) \cdot \mathcal{L}_{pred}(x, y_t, f) + \tau \cdot \underbrace{\mathcal{L}_{expl}(x, \xi_t, f)}_{= 1 - \tau}$$

 $\frac{\xi_t}{\left(\int_{t} f_{t} - f_{t} \right)}$

Explanation loss

$$\mathcal{L}_{expl}(x,\xi_t,f) = ||\xi_t - g(x,f)||_2$$

Ground-truth class of x: y_x Model's classification: f(x)Human's classification: h(x)

Ground-truth class of x: y_x Model's classification: f(x)Human's classification: h(x)

Explanation: A(x) Model's: $A_f(x)$ Human's: $A_h(x)$

Ground-truth class of x: y_x Model's classification: f(x)Human's classification: h(x)

Explanation: A(x)Model's: $A_f(x)$ Human's: $A_h(x)$ Agreement: $A_f(x) \approx A_h(x)$ Disagreement: $A_f(x) \not\approx A_h(x)$

Ground-truth class of x: y_x Model's classification: f(x)Human's classification: h(x)

Explanation

Explanation: A(x) Model's: $A_f(x)$ Human's: $A_h(x)$ Agreement: $A_f(x) \approx A_h(x)$ Disagreement: $A_f(x) \not\approx A_h(x)$ Consistency with class y: $A(x) \sim y$

Case 1 f(x) = h(x) $A_f(x) \not\approx A_h(x)$ Case 2 $f(x) \neq h(x)$ $A_f(x) \not\approx A_h(x)$ Case 3 $f(x) \neq h(x)$ $A_f(x) \approx A_h(x)$

Medical Image Diagnosis

Dataset: COVIDx (3 classes)

Model: Covid-Net (92.6% accuracy)

Large-Scale Image Recognition

Dataset: ImageNet (1000 classes)

Model: ResNet-50 (74.9% accuracy)
$f(x) = h(x) \land A_f(x) \not\approx A_h(x)$

Clean input Prediction: COVID-19

 $f(x) = h(x) \land A_f(x) \not\approx A_h(x)$

Clean input Prediction: COVID-19

$f(x) = h(x) \land A_f(x) \not\approx A_h(x)$

$A_f(x) \sim y_x$ Omit information Misleading recommendations

Clean input Prediction: COVID-19

Adversarial example Prediction: COVID-19

$f(x) = h(x) \land A_f(x) \not\approx A_h(x)$

 $A_f(x) \sim y_x$ Omit information Misleading recommendations Produce/hide biases

Clean input

Output: **Reject credit loan:** ➤ **Income** < 1200 ➤ and **Gender** = ! Adversarial exampleOutput: Reject credit loan:➤Income < 1500</td>➤ and Job= None

 $f(x) \neq h(x) \land A_f(x) \not\approx A_h(x)$

Clean input Prediction: COVID-19

$\begin{aligned} f(x) \neq h(x) \land A_f(x) \not\approx A_h(x) \\ A_f(x) \sim f(x) \end{aligned} \label{eq:formula}$ The model supports its (wrong) prediction

Clean input Prediction: COVID-19

Adversarial example Prediction: normal

$\begin{aligned} f(x) \neq h(x) \land A_f(x) \not\approx A_h(x) \\ A_f(x) \sim f(x) \end{aligned} \label{eq:formula}$ The model supports its (wrong) prediction

Clean input Prediction: COVID-19

Adversarial example Prediction: *normal*

The model supports its (wrong) prediction Shift the user's attention

Clean input Prediction: Curly-coated retriever

Large-Scale Image Recognition

$\frac{f(x) \neq h(x)}{A_f(x)} \wedge \frac{A_f(x)}{A_f(x)} \approx \frac{A_h(x)}{A_f(x)}$

The model supports its (wrong) prediction Shift the user's attention

Clean input Prediction: Curly-coated retriever

Adversarial input Prediction: Suit

81

 $f(x) \neq h(x) \land A_f(x) \approx A_h(x)$

Clean input Prediction: *Curly-coated retriever*

 $f(x) \neq h(x) \land A_f(x) \approx A_h(x)$ $A_f(x) \sim y_x$ Ambiguity $A_f(x) \sim f(x)$

Clean input Prediction: Curly-coated retriever

 $f(x) \neq h(x) \land A_f(x) \approx A_h(x)$ $A_f(x) \sim y_x$ Ambiguity $A_f(x) \sim f(x)$

Clean input Prediction: Curly-coated retriever

Curly-coated retriever

Irish water spaniel

 $f(x) \neq h(x) \land A_f(x) \approx A_h(x)$ $A_f(x) \sim y_x$ Ambiguity $A_f(x) \sim f(x)$

Clean input Prediction: Curly-coated retriever

Adversarial input Prediction: Irish water spaniel

Cases

$$f(x) = h(x) \land A_f(x) \not\approx A_h(x) \land A_f(x) \sim y_x$$

$$f(x) \neq h(x) \land A_f(x) \not\approx A_h(x) \land A_f(x) \sim f(x)$$

$$f(x) \neq h(x) \land A_f(x) \approx A_h(x) \land A_f(x) \sim y_x \land A_f(x) \sim f(x)$$

(knowledge acquisition, debugging, ethics...)

Additional factors and scenarios

- Type of explanation? (feature-based, prototype-based...)
- User expertise? (none, medium, high...)
- Objective?
- Impact?

Contributions

- Comprehensive roadmap for the design of realistic attacks against explainable ML:
 - Attack types
 - Requirements
 - Critical scenarios
 - Illustrative experiments
- More rigorous study of adversarial attacks in this domain
- Raise awareness about the possible threats that both models and humans may face

FACULTY OF COMPUTER SCIENCE UNIVERSITY OF THE BASQUE COUNTRY

Questions?

Acknowledgements:

- > Spanish Ministry of Science, Innovation and Universities
 - FPU19/03231 predoctoral grant
- > Spanish Ministry of Economy and Competitiveness MINECO
 - PID2019-104966GB-I00
- > Basque Government
 - ELKARTEK program

