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Adversarial Examples
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Attack Methods

Adversarial Examples

Fast Gradient Sign Method

Prediction loss

Gradient sign

Where

(Goodfellow et al., 2014). Explaining and harnessing adversarial examples. ICLR
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Attack Methods

Adversarial Examples

Projected Gradient Descent

Gradient sign

Projection 
operator

Prediction loss

Where

(Madry et al., 2018). Towards deep learning models resistant to adversarial attacks. ICLR
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Generating Adversarial Examples
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DeepFool

(Moosavi-Dezfooli et al., 2016). DeepFool: a simple and accurate method to fool deep neural networks. IEEE CVPR.
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Generating Adversarial Examples

DeepFool
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Objective: Develop an attack method                capable of:
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1. Producing misclassifications:

2. Controlling the frequency with which each class is predicted:

Target distribution of the output classes

‘Single-instance’       attack paradigm

‘Multiple-instance’   attack paradigm Consider multiple-inputs (coordinatedly):

Focus on individual inputs (isolatedly): 



Motivation
Representative use-cases: 

1. Aggregated predictions are highly relevant (quantification…)

a. Collective information retrieval (opinion mining…)

b. Prevalence of a disease (epidemiology…)
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Main objective:
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Bounded perturbation

Main objective:

Attack
process:

Given: 2. Normalize the probabilities

Approach
Requirement:   a targeted adversarial attack algorithm
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Main objective:

Attack
process:

Given: 3. Select a target class

Approach
Requirement:   a targeted adversarial attack algorithm
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Bounded perturbation

Transition matrix
Source

distribution
Target 

distribution

1. Compute the set of 
“reachable” classes

2. Normalize the probabilities

Some class transitions might not be feasible



Generating transition matrices

T is a transition matrix
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T produces the target distribution
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Generating transition matrices

T is a transition matrix

T produces the target distribution

Maximize the fooling rate
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Different solutions might produce different results in practice

Generating transition matrices

T is a transition matrix

T produces the target distribution
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Maximize the fooling rate



Generating transition matrices

T is a transition matrix

T produces the target distribution

Additional constraints to include information about the problem
Four different methods proposed  (+2 baselines)
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Different solutions might produce different results in practice

Maximize the fooling rate



Example: Upper-Bound Method (UBM)

:  Number of samples that can be
   moved from the class i to the class j

N inputs 
per class

:  “Maximum proportion” for each  transition

Creating more informed transition matrices

Intuition: Prioritize those transitions that are feasible with higher frequency.

Upper bound for the highest probability:
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T is a transition matrix

T produces the target distribution

Example: Upper-Bound Method (UBM)

Creating more informed transition matrices
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T produces the target distribution
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T is a transition matrix

T produces the target distribution

Avoid null probabilities

Example: Upper-Bound Method (UBM)
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T is a transition matrix

T produces the target distribution

Avoid null probabilities

Example: Upper-Bound Method (UBM)

Creating more informed transition matrices
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Avoid “excessively high” probabilities



Evaluation:
➢ 2 classification problems (speech commands, TSA):

Main results and conclusions
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Speech Command Classification
12 classes: {“yes”, “no”,  “stop”, “go”...}

Tweet Sentyment Analysis
6 classes: {anger, fear, joy…}
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Speech Command Classification
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Main results and conclusions

No “best method” for all the factors considered:
➢ Fooling rate  vs  Similarity  

Results averaged for 100 random target distributions.
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Contributions

● Novel multiple-instance attack paradigm:
○ Produce misclassifications for the incoming inputs
○ Control the probability distribution for the output  classes

● Four different methods proposed

● Expose novel vulnerabilities in multiple scenarios 
and use-cases:

○ Adversarial label-drifts
○ Attacks less detectable in the long run

Single
instance

scenarios

Classification
models

Multiple
instance

scenarios
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When and How to Fool Explainable Models 
(and Humans) With Adversarial Examples
J. Vadillo, R. Santana, J. A. Lozano. Under Review.
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How to generate stealthy and realistic adversarial attacks against explainable models 
(under human supervision):

o Requirements
o Attack types
o Critical scenarios

Objective

Motivation



 The movie was absolutely awful!

Prediction: 
Great Pyrenees

Prediction: 
COVID-19

Prediction:  Negative

Local feature-based explanations
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Explanation methods



Adversarial attacks

62

Target class (     ):                                                 Target explanation (    ):
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Adversarial attacks
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Projected Gradient Descent

Attack lossProjection
operator



Adversarial attacks
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Target class (     ):                                                 Target explanation (    ):

Projected Gradient Descent

Generalized attack loss
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Target class (     ):                                                 Target explanation (    ):

Projected Gradient Descent

Generalized attack loss

Prediction loss
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Target class (     ):                                                 Target explanation (    ):

Projected Gradient Descent

Generalized attack loss

Explanation loss
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Target class (     ):                                                 Target explanation (    ):

Projected Gradient Descent

Generalized attack loss

Explanation loss
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Explanation: Model’s: Human’s:
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Adversarial attacks
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Medical Image 
Diagnosis

Dataset: COVIDx
(3 classes)

Model: Covid-Net  
(92.6% accuracy)

Large-Scale
Image Recognition

Dataset: ImageNet  
(1000 classes)

Model: ResNet-50  
(74.9% accuracy)

Case 1

Case 2

Case 3



Clean input
Prediction: COVID-19
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Case 1
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Adversarial example
Prediction: COVID-19

Clean input
Prediction: COVID-19

Case 1
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Omit information
Misleading recommendations



Adversarial exampleClean input

Output: Reject credit loan:
➢          Income  <   1200
➢ and   Gender  =    !

Output: Reject credit loan:
➢          Income  <   1500
➢ and   Job         =   None

Omit information
Misleading recommendations
Produce/hide  biases

Case 1
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Clean input
Prediction: COVID-19

Case 2
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The model supports its
(wrong) prediction

Clean input
Prediction: COVID-19

Adversarial example
Prediction: normal

Case 2
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Clean input
Prediction: COVID-19

Adversarial example
Prediction: normal

Case 2
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The model supports its
(wrong) prediction

Clean input
Prediction: Curly-coated retriever

Shift the user’s attention

Case 2

80

Large-Scale 
Image 
Recognition



The model supports its
(wrong) prediction

Clean input
Prediction: Curly-coated retriever

Adversarial input
Prediction: Suit

Shift the user’s attention

Case 2
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Clean input
Prediction: Curly-coated retriever

Case 3
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Ambiguity

Clean input
Prediction: Curly-coated retriever

Case 3
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Clean input
Prediction: Curly-coated retriever

Ambiguity

Case 3
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Irish water spaniel

Curly-coated retriever



Clean input
Prediction: Curly-coated retriever

Adversarial input
Prediction: Irish water spaniel

Ambiguity

Case 3
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Cases

● Type of explanation? (feature-based, prototype-based…)
● User expertise?             (none, medium, high…)
● Objective?                       (knowledge acquisition, debugging, ethics…)
● Impact?

Additional factors and scenarios



Contributions

87

● Comprehensive roadmap for the design of realistic 
attacks against explainable ML:
o Attack types
o Requirements
o Critical scenarios
o Illustrative experiments

● More rigorous study of adversarial attacks in this 
domain

● Raise awareness about the possible threats that 
both models and humans may face

Single
instance

scenarios

Classification
models

Explainable
classification

models
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