[TEKNIK]

PROBLEMS OF THE DIGITAL AGE: DIGITAL FORENSICS AND DATA RECOVERY

MERRIC PROPERTY IN CONTRACTOR

Vinny Dunne

Data Recovery, Digital Forensics and Electronics lead technician. Business owner.

Importance of DFIR and DR today

DFIR

- It is essential in the modern world, as criminals increasingly use technology to commit crimes.
- Its importance lies in the resolution of cybercrimes and the protection of sensitive data.

DATA RECOVERY

- It is essential in today's era, providing the crucial ability to restore lost information, ensuring operational continuity, and mitigating the consequences of events such as technical failures, accidental loss, or cyber attacks.
- Additionally, it is also applied in the investigation of security incidents, the recovery of lost data, and the protection of the integrity of digital information.

DFIR DIGITAL FORENSICS AND INCIDENT RESPONSE

Multidisciplinary field that employs techniques from computer science, law, and investigative procedures to collect, analyze, and preserve electronic evidence in order to solve and prevent cybercrimes

Objectives and scope

- Its main objectives include the collection of digital evidence, determination of responsibilities, and prevention of future incidents.
- Its scope covers areas such as cybercrime, computer security, and data recovery.

- José Mugica, Ex-presidente de Uruguay

- Analysis of malware on smartphones and mobile phones (Anti-Malware Services).
- Investigation of routes and data storage in Remotely Piloted Aircraft (Drones).
- Identity theft or impersonation.
- Unfair competition investigation.
- Computer sabotage.
- Crimes against intellectual or industrial property.
- Discovery and disclosure of secrets, industrial espionage, etc.
- Investigation and analysis of computers involved in legal disputes or trials under chain of custody.
- Violation of confidentiality or company policies.
- Breach of privacy rights and communication rights in the workplace.
- Investigation of inappropriate computer use during working hours.
- Chat, file, and web browsing history, or any other form of electronic communications.
- Unauthorized access to computer systems.
- Investigation of data deletion, theft of computer data, and information leakage.
- Recovery of data stored on any device or in the cloud.
- Origin of email and instant messaging messages.
- Logs and traces of communications via email and instant messaging.
- Detection of hidden microphones and cameras (Electronic sweep services)

Scenarios

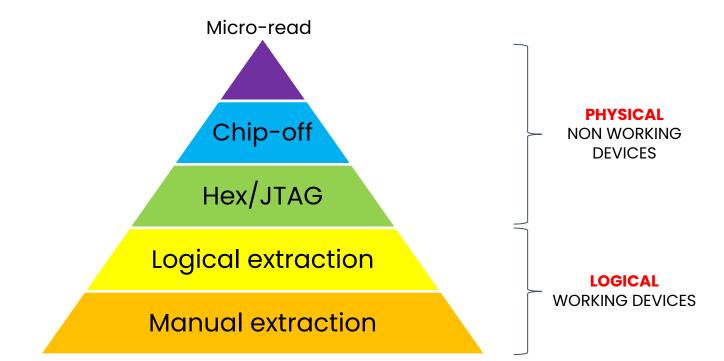
1. Case study

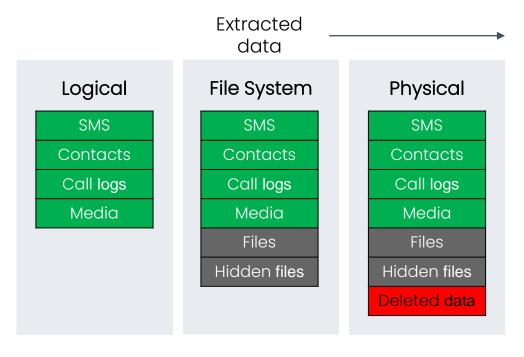
- Main Pillar
- Understanding of the Legal Context
- Interviews with Affected Parties
- Identification of Potential Evidence •
- Risk Assessment

[TEKNIK] DataLab

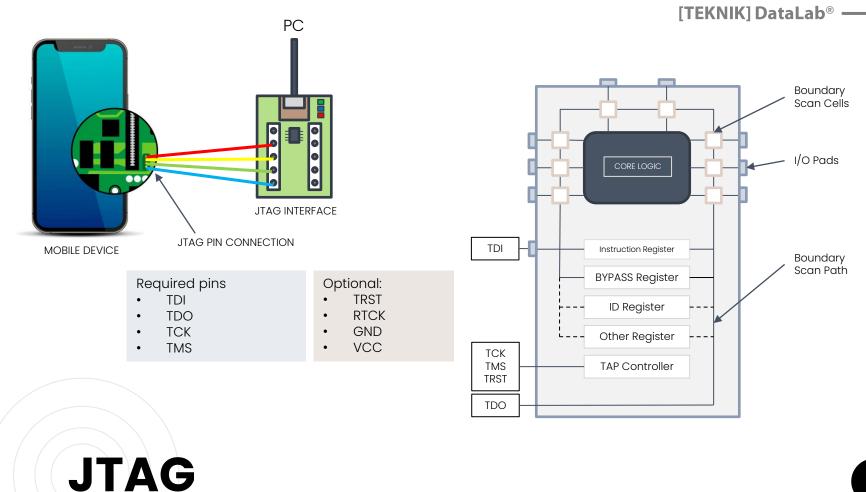
2. Adquisition

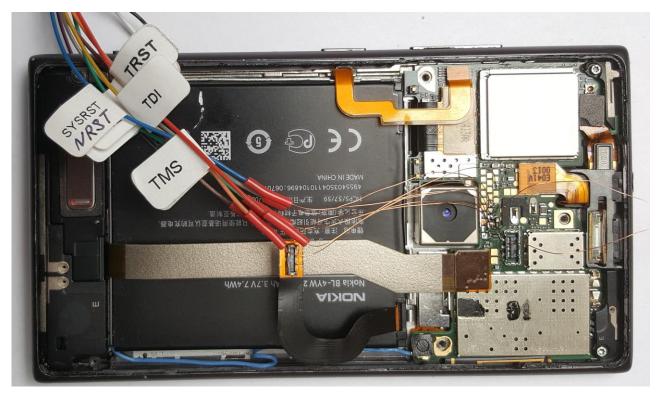
- Collecting evidence
- Copies
- Mobiles: physical/logical
- Chain of custody \rightarrow **HASH** •
- Must be reproducible




Forensic Workstation

Portable solutions




Extraction (mobile devices)

Extraction speed

Extraction (mobile devices)

Source: **(packt)**

HTC M8 (eMMC)

Chip-off #01

18

Unbranded phone (eMCP)

Chip-off #02

It is the result of a cryptographic function through a mathematical algorithm that transforms any arbitrary block of data into a series of characters with a fixed length.

Regardless of the length of the input data, the output hash value will always have the same length

$$\begin{array}{c} H: U \to M \\ x \to h(x) \end{array}$$

MD5: 0ED4D6C6175378B65CE2E87B7220CBF3 SHA-1: CF9EDA0B9DE7B82E7B7C13F8ADE2DC91912D4CBD SHA-256: EE1A30EDB70A4FEF77213C31CDC604D326356FBE676C54F60C6263CFC7DEE5EE

3. Analysis

- Examine collected data
- Identify patterns
- Recover hidden information •
- Data carving •
- Reconstruction of events
- Establish timeline •

- Almost all files have start and end identifiers or file signatures (headers/footers)
- Some have headers and no footers, or footer is not important for recovery
- Some of them have none at all, which can be an identifier (emails or TXT files)

JPG	FF D8
PDF	25 50 44 46
GIF	47 49 46 38
DOC	D0 CF 11 E0 A1 B1 1A E1

FF D9 25 25 45 4F 46 00 3B File struc. Based.

DATA CARVING

Healthy image

20231207_22	20600	.jpg	ED AO	202	23112	22_18	32726	jpg											ditores especiales
Offset(h) 00 01 02 03 04 05		05	06	07	08	09	0A	0B	0C	OD	0E	OF	Texto decodificado ^	^	Inspector de datos				
00000000	FF	D8	FF	E1	74	BB	45	78	69	66	00	00	49	49	2A	00	₩Ø₩át»ExifII*.		
00000010	08	00	00	00	0C	00	00	01	04	00	01	00	00	00	80	OF	€.		
00000020	00	00	01	01	04	00	01	00	00	00	B 8	08	00	00	0F	01			Binary (8 bit) 11111111
00000030	02	00	08	00	00	00	9E	00	00	00	10	01	02	00	09	00	ž		Int8 Ir a: -1
00000040							12												UInt8 Ir a: 255
00000050							01							00			ò		Int16 Ir a: -9985
00000060							DA										Ú(Uint16 Ir a: 55551
00000070							31							00			····· [°] ·		
00000080							14 01							00			2¥ i‡		Int24 Ir.a: -9985
0000000A0							BC		00		73						â ¹ 4samsun		Ulnt24 lr.a: 16767231
000000B0							39							39			g.SM-G988BG988		Int32 Inválido
000000000							57										BXXSIHWI7.2023:1		UInt32 Inválido
00000D0	31	3A	32	32	20	31	38	ЗA	32	37	3A	32	36	00	48	00	1:22 18:27:26.H.		Int64 Ir a: Inválido
000000E0	00	00	01	00	00	00	48	00	00	00	01	00	00	00	1C	00	H		UInt64 Ir a: Inválido
000000F0	9A	82	05	00	01	00	00	00	78	02	00	00	9D	82	05	00	š,x,		LEB128 Ir a: Inválido
00000100	01			00					22					00			p"^		ULEB128 Ir a: Inválido
00000110							03										'^Ä		AnsiChar / char8_t ÿ
00000120									30										WideChar / char16 t
00000130	14						00		04				14	00			8		Punto de código UTF-8 Unidad de código no válida
00000140 00000150							02 00							02			L		
00000150		00		00			00		02						00		····.€····′····		Single (float32) Inválido
00000170							OA							02			^		Double (float64) Inválido
00000180									98			00		92			.,		OLETIME Inválido
00000190							00												FILETIME Inválido
000001A0	00	00	00	00	0A	92	05	00	01	00	00	00	A 8	02	00	00	· · · · · / · · · · · · " · · ·		DOS date 31/07/2088
000001B0	90	92	02	00	04	00	00	00	34	39	34	00	91	92	02	00	.'		DOS time Inválido
000001C0	04	00	00	00	34	39	34	00	92	92	02	00	04	00	00	00			DOS time & date Inválido
000001D0									01			00		00			494		time_t (32 bit) Inválido
000001E0							00		80			00		A0			€		time t (64 bit) Inválido
000001F0							00										····.,···.¤·····		GUID Inválido
00000200							03					00		00			×		Disassembly (x86-16) Inválido
00000210							00										.¤¤		
00000220									00						00		¤°		Disassembly (x86-32) Inválido
00000240							32										2023:11:22 1		Disassembly (x86-64) Inválido
00000250							36										8:27:26.2023:11:		
00000260							32										22 18:27:26.+01:		
00000270	30	30	00	00	2B	30	31	3A	30	30	00	00	DC	00	00	00	00+01:00Ü		
00000280	64	00	00	00	01	00	00	00	0D	00	00	00	01	00	00	00	d		
																	~ .		

DATA CARVING

×

Empty image

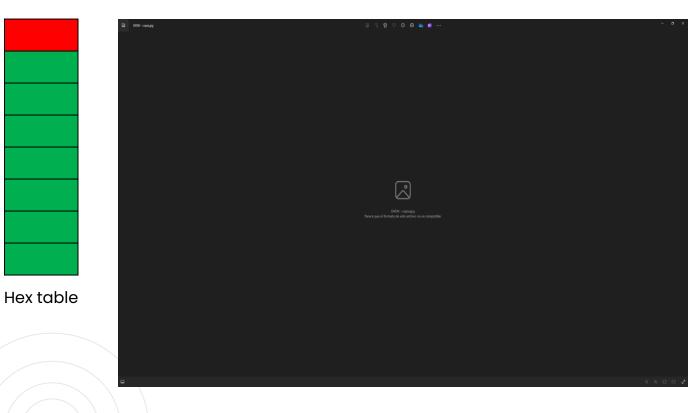
20231207_22	20600).jpg	FD	202	23112	22_18	32726	5.jpg											E	ditores especiales		
Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	oc	OD	0E	OF	Texto decodificado	^		nspector de datos		
00000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00						
00000010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00			Ι.			
00000020		00						00			00			00						Binary (8 bit)		0000000
00000030		00	00	00		00			00	00	00	00	00		00					Int8	Ir a:	0
00000040		00	00					00	00		00	00	00	00	00					UInt8	Ir a:	0
00000050		00	00			00		00	00	00	00			00	00					Int16	Ir a:	0
000000070	00		00	00		00		00	00	00	00	00	00	00	00					UInt16	Ir a:	
00000080			00		00						00		00	00						Int24	Ir a:	
00000090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					UInt24	Ir a:	
000000A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				Int32		
000000B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					Ir a:	
00000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				UInt32	Ir a:	
00000D0		00	00		00			00	00		00		00	00						Int64		Inválido
000000E0		00	00			00			00	00	00	00	00		00					UInt64		Inválido
000000F0		00	00			00			00	00	00	00	00	00	00					LEB128	Ir a:	0
00000100			00					00			00			00						ULEB128	Ir a:	0
00000110	00		00	00		00			00	00	00	00	00	00	00		•••••			AnsiChar / char8_t		
00000120			00						00		00			00						WideChar / char16_t		
00000140		00	00			00		00	00	00	00	00	00	00	00					Punto de código UTF-8		(U+0000)
00000150		00	00	00	00	00		00	00	00	00	00	00	00	00					Single (float32)		0
00000160	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				Double (float64)		Inválido
00000170	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				OLETIME		Inválido
00000180	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				FILETIME		Inválido
00000190		00	00						00	00	00	00	00		00					DOS date		Inválido
000001A0		00	00	00		00			00	00	00	00	00	00	00							
000001B0		00	00	00	00	00			00	00	00	00	00	00						DOS time		0:00:00
000001C0 000001D0	00		00			00			00			00	00	00	00		•••••			DOS time & date		Inválido
000001E0		00							00		00	00		00						time_t (32 bit)		01/01/1970
000001F0		00	00			00		00	00	00	00		00	00	00					time_t (64 bit)		Inválido
00000200		00	00	00		00		00	00	00	00	00	00	00	00					GUID		Inválido
00000210	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				Disassembly (x86-16)		add [bx+si],al
00000220	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				Disassembly (x86-32)		add [eax],al
00000230	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				Disassembly (x86-64)		add [rax].al
00000240			00					00	00		00			00								
00000250		00	00	00	00	00		00	00	00	00	00	00	00	00		•••••					
00000260		00	00		00						00			00			•••••					
00000270		00	00						00		00	00		00			•••••					
00000280	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	•••••		Ľ			

DATA CARVING

Healthy image

Hex table

Barely damaged


27

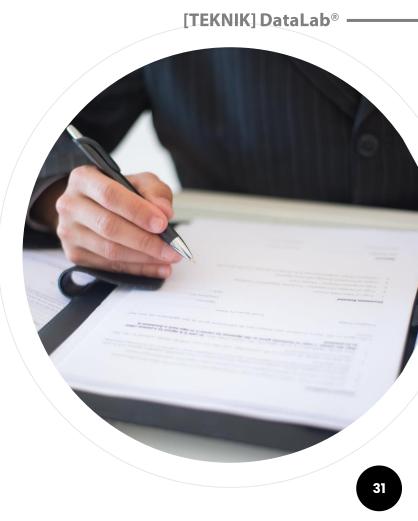
Hex table

Badly damaged

Corrupt

29

	•	s: 100	.00 .00 ramework 2.0.2	Scanning layer PDB scanning fi		ng PdbSi	gnatureS	ica
	PID	PPID Wow64	ImageFileName CreateTime	Offset(V) ExitTime	Threads File out	Handles put	Session	Id
	4 • 021-04-	0 30 12:39	System 0xbf0f0 9:40.000000	64a63080 132 N/A Disabled	- t	N/A	False	2
	108	4	Registry -30 12:39:38.000	0xbf0f64bc6040	4 Disabled		N/A	F
	396	4	smss.exe -30 12:39:40.000	0xbf0f66967040	2 Disabled		N/A	F
	492 alse	484 2021-04	csrss.exe -30 12:39:44.000	0xbf0f6adb6080 000 N/A	13 Disabled		0	F
	568	484	wininit.exe	0xbf0f6b67a080	1		0	F
olatility 3 Framework 2.0.2 rogress: 0.00 Scanning layer_name using PdbSig rogress: 0.00 Scanning layer_name using PdbSig rogress: 100.00 PDB scanning finished ser rid Imhash nthash								
ae931b73c59d7e0c089c0 uest 501 aad3b435b51404eeaad3b435b51404ee 31d6cfe0	31d6cfe	-	U	ser passw	ords			
ae931b73c59d7e0c089c0	31d6cfe	ðd1						
DAGUtilityAccount 504 aad3b435b51404eeaad3b435b51404ee bee1a98d4f53fbccb1fe5ce37c851		69						
ohn Doe 1001 aad3b435b51404eeaad3b435b51404ee	ecf53750	and the second se						


DATA CARVING (RAM)

Vo Pr

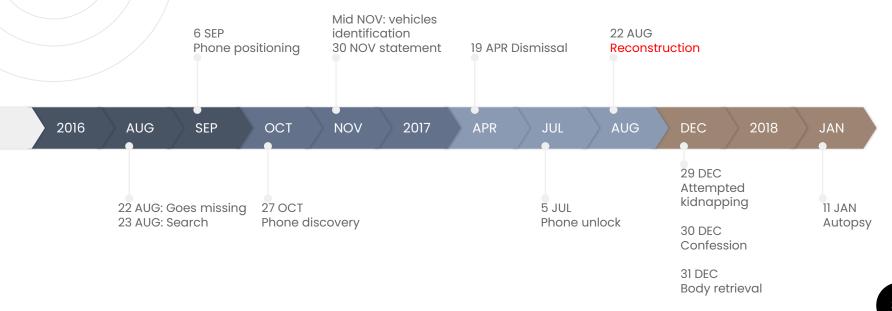
> db Jol

4. Report

- UNE 197010/2015
- Objectives/scope
- Methodology
- Additional documentation
- Conclussions
- Clear, precise, and supported by solid evidence

DIANA QUER

- Went missing 22nd August 2016
- Body retrieval 31st December 2017



iPhone 6 iOS 9

Chrono: Diana Quer

MARTA DEL CASTILLO

- Went missing 24th January 2009
- Her body has not been found yet

Motorola U9 Linux / Java

LAZASUS

2

"LA MANADA"

Events: 7th July 2016 ٠

LG G3S

3

iPhone 5

Vodafone

Smart First 6

LG L9 II

Google Nexus 5

Data Recovery

Set of procedures used to access information stored on a digital medium that, for various reasons, is not accessible conventionally

Scenarios

- Accidental deletion
- Data corruption
- Disk formatting
- System failure
- Attacks, malware, virus/ransomware
- Physical damage to the device

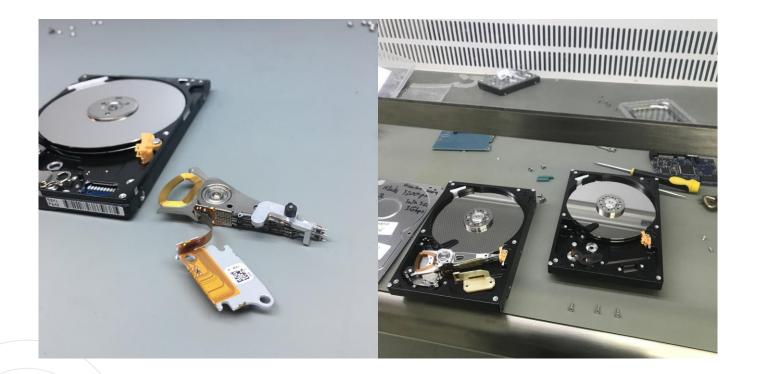
Storage media

- Tapes
- HDD/SSD disks
- RAID/NAS/Servers systems
- USB drives
- Memory cards
- Mobile devices

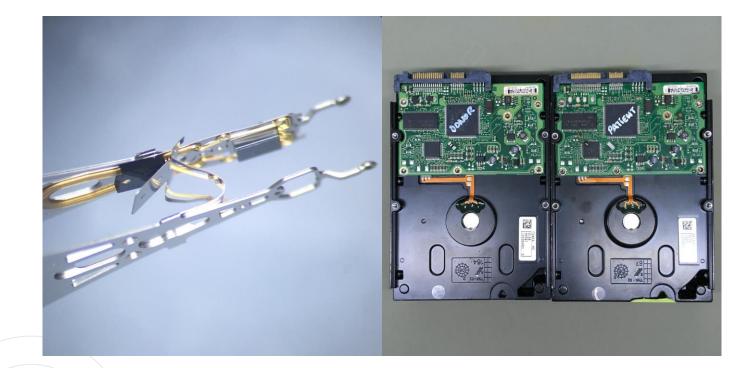
Common cases

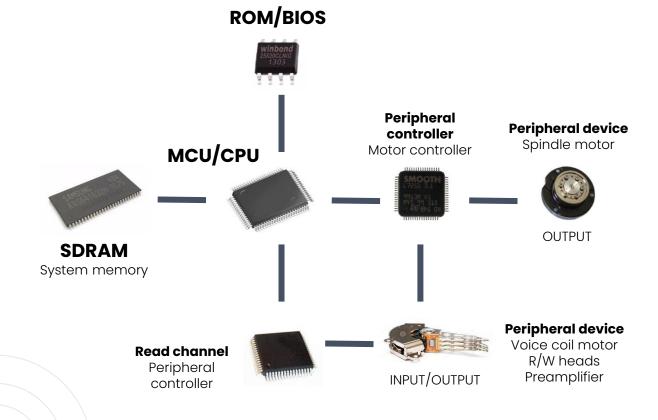
- Basic logical
- Advanced logical
- Electronic fault
- Media or firmware issues
- Physical

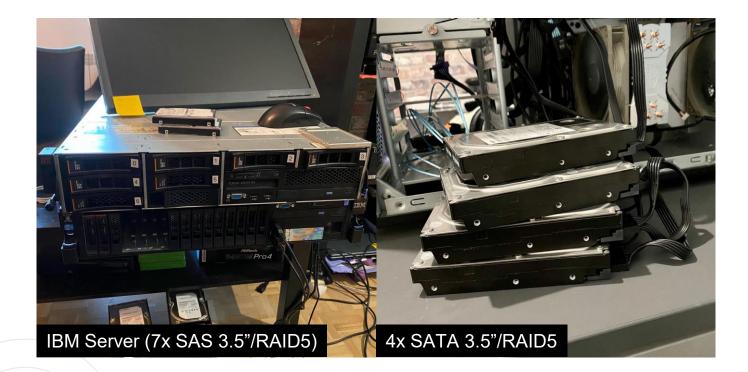
HDD


Problems

- + Density/+ Heads
- Helium drives
- Scarcity of old drives
- Searching for donors
- Time consuming




HDD (helium drive)


HDD (head swap)

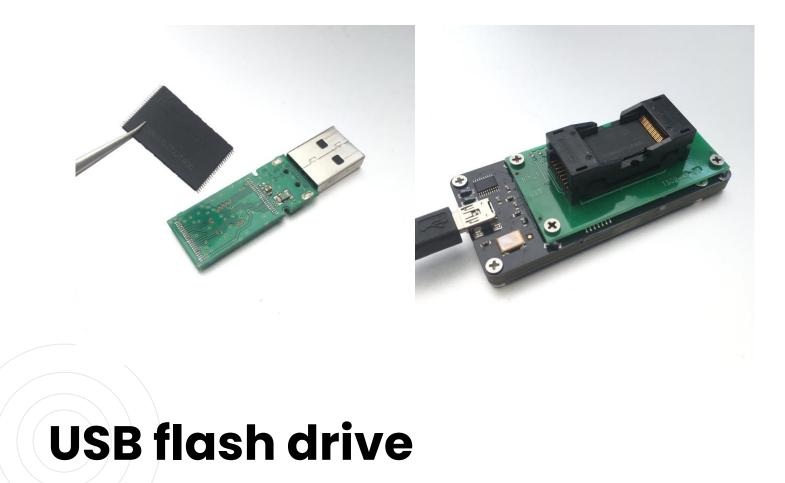
HDD (head assy/PCB)

HDD (PCB)

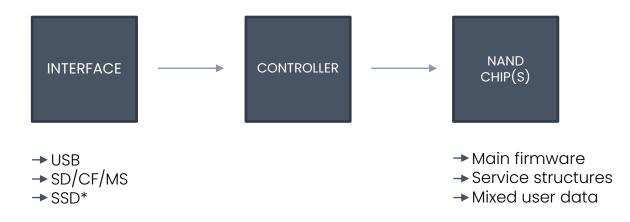
Common cases

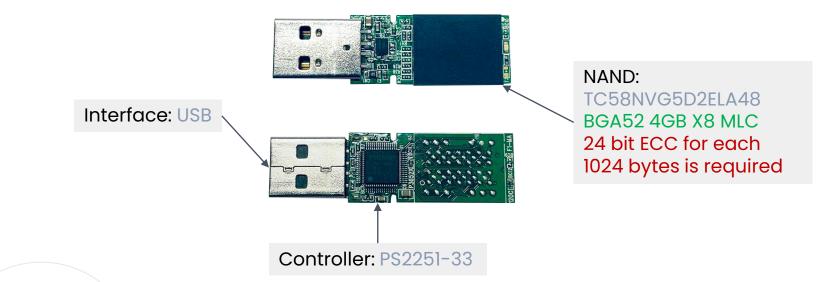
- Mild media issues
- Electronic, controller and/or memory degradation
- Physical

SSD

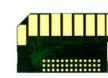

Problems

- No support
- Encrypted drives (SED)
- Scarcity of old drives
- Searching for donors




Chip-off method Flash devices


- I. Flash device structure
 - 2. Types of chips
 - 3. How data is stored
 - 4. Bit errors
 - 5. Encryption in flash drives
 - 6. How this is usefull in DFIR
 - 7. Steps during recovery

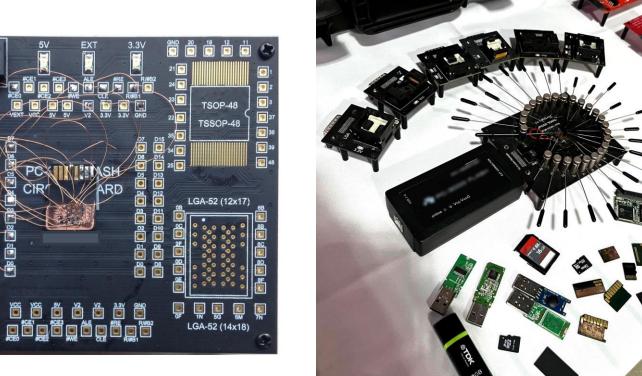


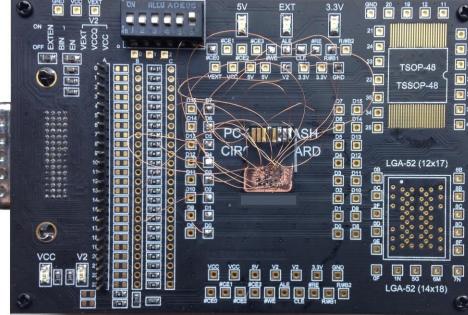
1. Flash device structure

SMT: surface mount technology



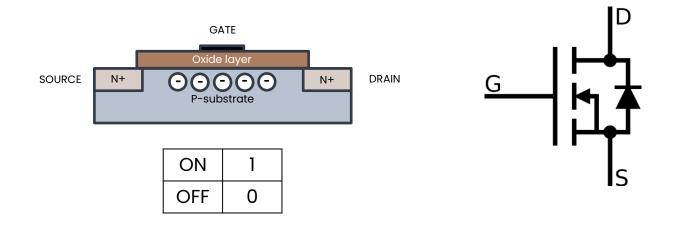
Source: ***ACELab**[®]


microSD USB

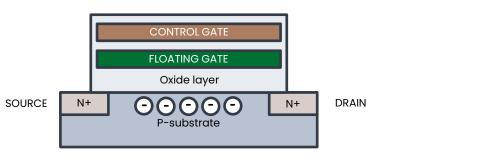

SD

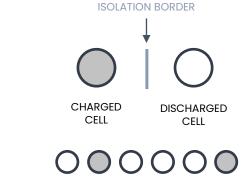
- Unified structure of the NAND flash ٠ device
- All components integrated into a single ٠ chip

Monolith



Data recovery: NAND protocol


SLC: Single Level Cell MLC: Multi Level Cell TLC: Triple Level Cell QLC: Quad Level Cell


4		SLC	0	1															PRICE
		MLC	00	01	10	11													
		TLC	000	001	010	011	100	101	110	111									
QUA	LITY	QLC	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	I

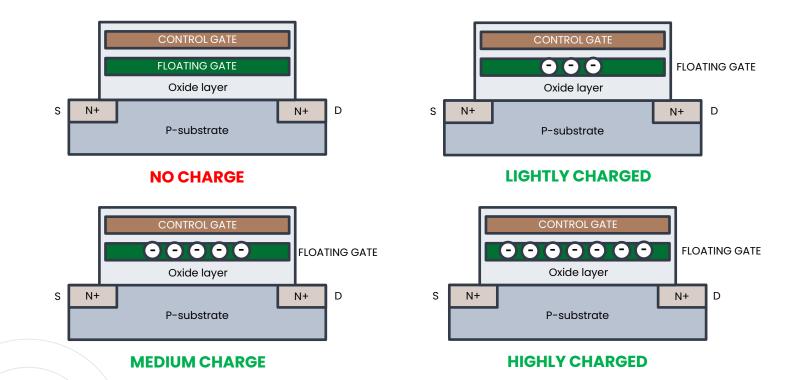
2. Types of chips

3. How data is stored: the N-mosfet

1

1

1

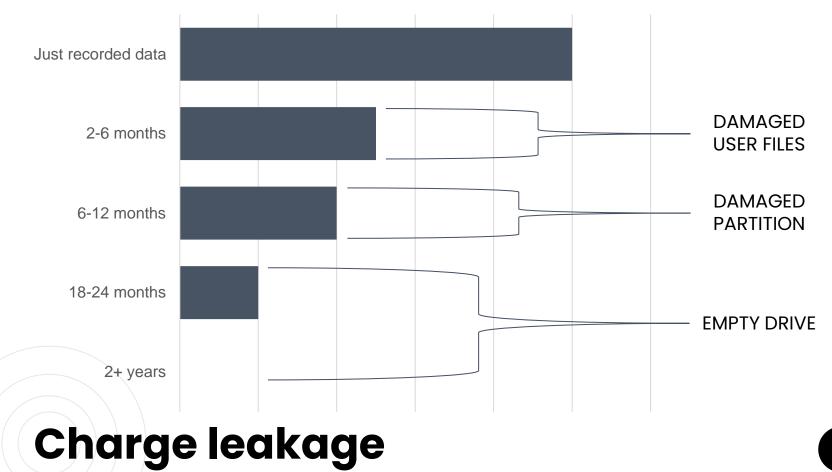

0

0

↓ V for Reading

- ↑ V for Erasing/Writing
- Degradation of isolation border
- Charge leakage

3. How data is stored (SLC)



3. How data is stored (MLC)

4. Bit Errors in memory chips

- Bad quality NAND
- Charge leakage
- Damaged Temp/Volt table
- Compression of data
- Small process node
- Wear leveling/Block erase

[TEKNIK] DataLab[®] —

DEFAULT VALUES

Temp	VCC
-20°C	3V
20°C	3.3V
80°C	3.6V


POSSIBLE SHIFT

Temp	VCC
-20°C	3.3V
20°C	3.6V
80°C	3.9V

NORMAL READING

READING WITH ERRORS

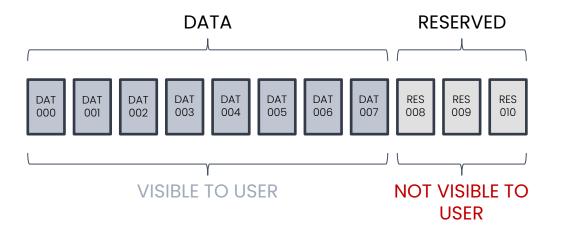
Temperature/Voltage table

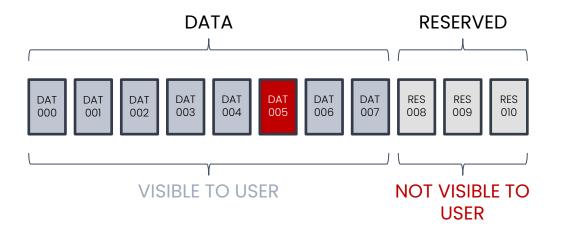
Reading errors

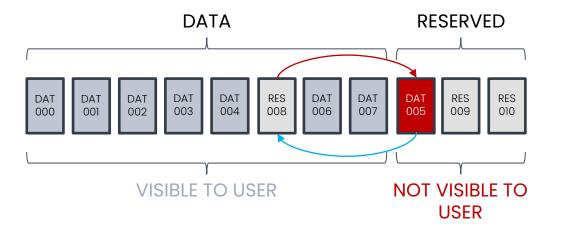
Hot air

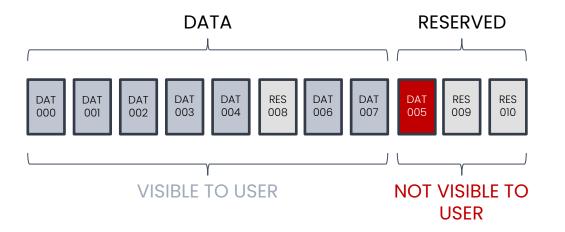
Used for error reading

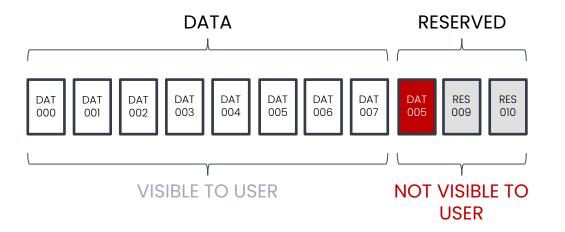
5. Encryption in flash drives

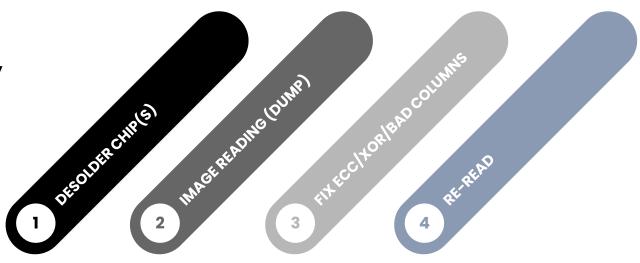

- Hardware encryption by Flash
 controller
- Software encryption on partition (Bitlocker/Filevault/other)
- XOR

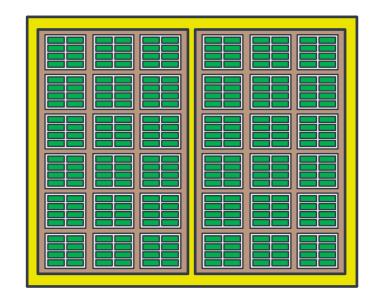


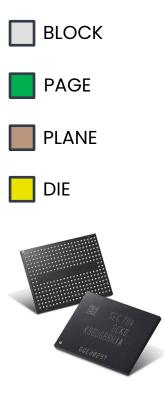

6. How is this useful in DF


- We have access to unadressed space in the memory chip
- Deleted files or formatted drives can be recoverable

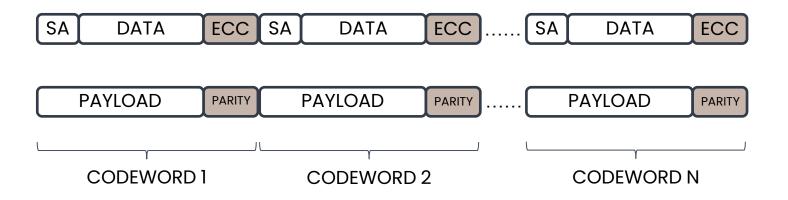








Chip-off recovery



NAND flash die layout

SPARE AREA, DATA AREA, ECC AREA

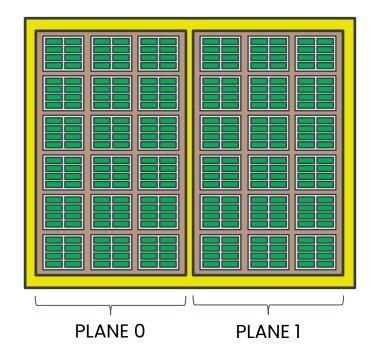
CODEWORD: Controller model, Page size, ECC size, Number of Codewords

Page/ ECC structure (payload/parity)

Error Correction Codes (ECC) are algorithms used to add additional information (**parity bits**) to stored data.

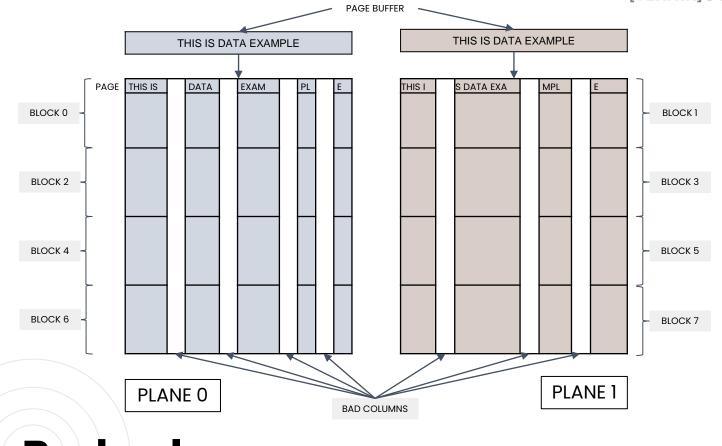
These additional bits enable the detection and correction of errors when reading the data.

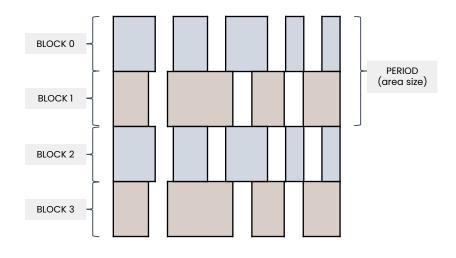
The **BCH ECC codes** are frequently utilized in flash storage devices. The BCH algorithm is customizable and comes with a specific set of parameters. These parameters are pre-configured in the controller's firmware and vary from one model to another. **If the controller becomes damaged**, the parameter information is lost; however, **ECC checksums persist** within each page of the NAND chip.


We use a BCH decoder designed to correct errors in data by utilizing the available ECC checksums. This ECC-based error correction algorithm can be implemented on the physical image after it has been extracted

This process is very time consuming

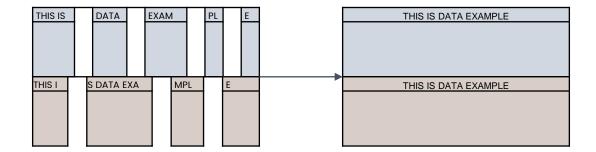
XOR analyzer XOR analyzer XOR Data area Spare area Dump analysis functions XOR Data Dump analysis functions	Find codewords Codeword analysis 101 100 Correct 100 100 Reread dump 100 0 0 Correct 100 0 Correct <td< th=""><th>Autodetect or search in database (if lucky)</th></td<>	Autodetect or search in database (if lucky)
Reader 0 C Phy image	Enter filter string	(II IUCKY)
	▲ Dump Length (bytes) 4529848320 Automatic str ✓ ▲ ECC corrector	Phison controller
	Power Off Code words Phison(PS)\PS2251-50-F_ Page size 8640 € ●	
	Use buffer Use buffer	


Page of flash memory

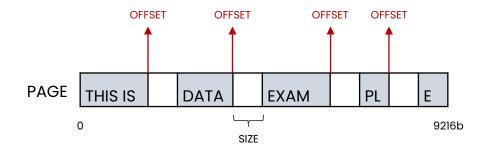


NAND flash die layout

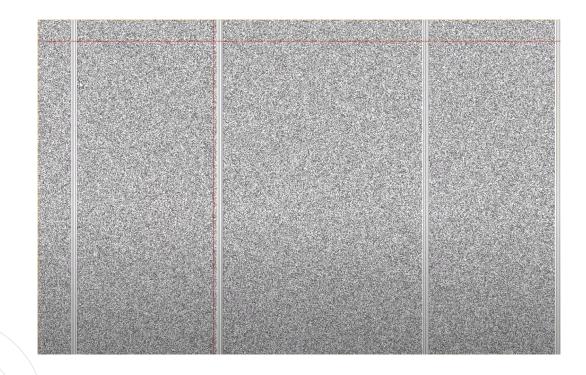
[TEKNIK] DataLab®

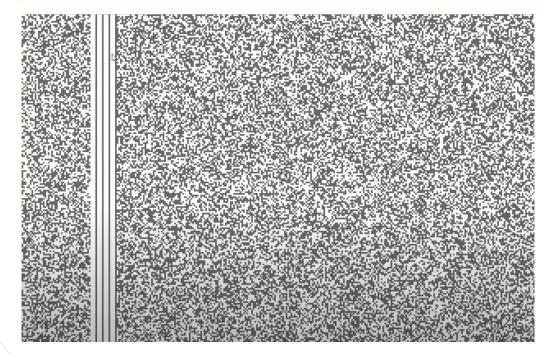


PHYSICAL IMAGE


Bad columns

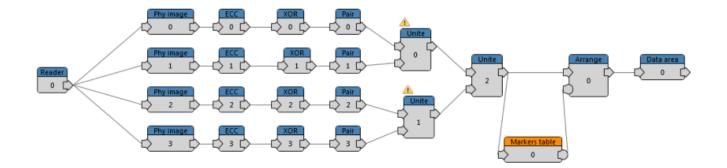
78




PHYSICAL IMAGE WITH BAD COLUMNS

PHYSICAL IMAGE WITHOUT BAD COLUMNS

It's necessary to determine the location, size and number of Bad columns within one page of each plane. Location is offset of bad column from the beginning of page. Bad Column size expressed in bytes. Number determines number of offsets from the beginning of page, that must be added in order to cut Bad Column defects.



Modern flash controllers employ scrambling algorithms during the data recording process in flash memory. A typical implementation of a scrambler involves the generation of a unique scrambling (XOR) key by the controller, which is then combined with the data through an XOR gate/operation. This occurs for every data block/page before it is written into the flash memory.

Generally, the XOR key is specific to a particular controller model. However, there are instances where similar controllers may use different XOR keys, and different controllers may use the same key. Unlike encryption, **scrambling is not implemented for security purposes**; instead, it eliminates data patterns that modern NAND chips struggle to store effectively due to charge leakage from adjacent cells. **It serves as a data-integrity measure** rather than a security measure.

XOR scrambling

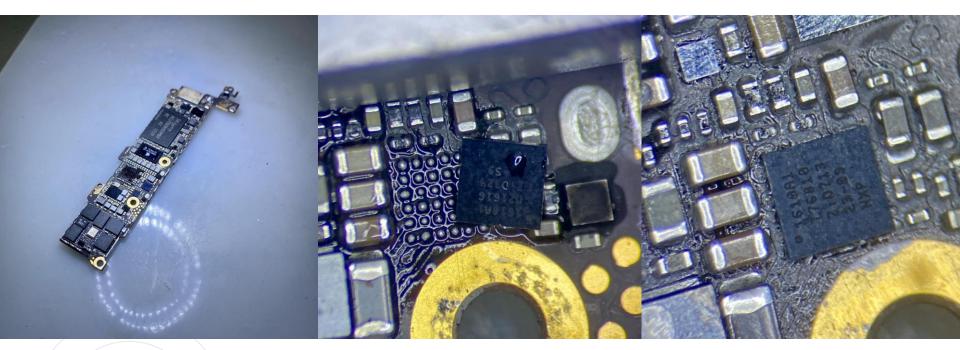
[TEKNIK] DataLab[®] -

Assembly

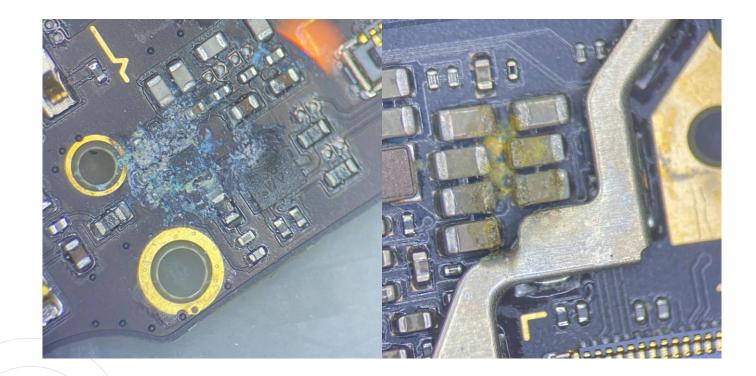
84

Extra Resources

R


Phones

Tel: 848 880 028 | info@teknik.eus f 🖸 🖸 [TEKNIK] Empresa líder Navarra [TEKNIK] Repair Group Digital Forensics & **Data Recovery** sta web usa cookies propias y de terceros para mejorar la experienc e navegación y ofrecerte contenidos interesantes mediante el anális le tus hábitos de navegación. Si continúas navegando, consideramo que aceptas su uso. Puedes cambiar la configuración u obtener más información en nuestra Política de Cookies. Aceptar


Política de cookies

[TEKNIK] DataLab®

[TEKNIK] DataLab[®] -

iPhone SE (liquid damage)

Xiaomi Mi A2 (liquid damage)

Xiaomi Mi A2 (EDL mode)

Chip swap

- CPU
- BASEBAND
- NAND
- EEPROM

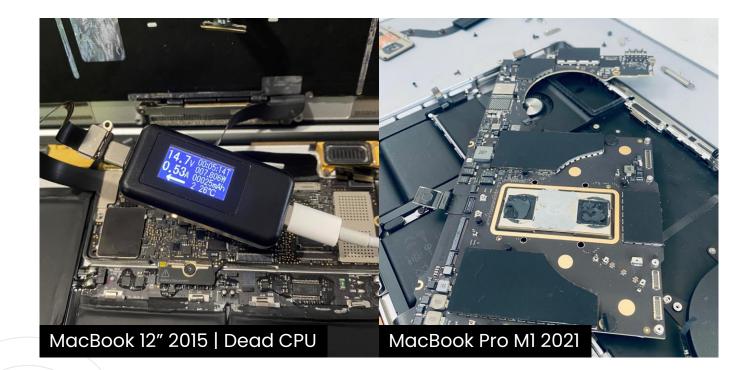
iPhone X

Bottom board:

- NFC
- WIFI/BLUETOOTH
- BASEBAND
- BASEBAND EEPROM

Top board:

- CPU
- LOGIC EEPROM
- NAND



Laptops

MacBook

MacBook

Honorable mention: Louis Rossmann

- Pioneer right to repair activist
- Joe Biden signed an executive order directing the Federal Trade Commission to draft new regulations limiting device manufacturers' ability to restrict independent repairs of their products.
- In 2022, got the first bill passed in Colorado. In 2023, we saw two more bills pass in Minnesota & California.
- Has been supported by millions of people and the entire electronics community, including Apple co-Founder: **Steve Wozniak**

Thanks!

Any questions?

You can find me at info@teknik.eus