MONITORING RESEARCH AND INNOVATION FROM HETEROGENEOUS SOURCES USING KNOWLEDGE GRAPHS

Vanni Zavarella University of Cagliari - Department of Mathematics and Computer Science

DATAI – UNAV November 22nd, 2023

Outline

Ę

- Knowledge Graphs
- Use Case: Scholarly Domain
- Pipeline
- Data Collection
- Data Preprocessing
- Entity Extraction and Linking
- Relation Extraction and Clustering
- Triple Store and Data storing
- Current Limitations
- Ongoing developments

Knowledge Graphs: Definition

- Directed edge-labelled graphs representation of a target domain
- Formally, a tuple: $G \coloneqq (V, E, L)$ with
 - V a finite set of nodes
 - *L* a finite set of labels
 - $E \subseteq V \times L \times V$ is a set of edges
- More flexible than tabular data representation
- No topology specifications

- V = {Clint_Eastwood, Anna_Levin, Unforgiven}
- $L = \{acts_in, directs\}$
- E = {(Clint_Eastwood,acts_in,Unforgiven), {(Clint_Eastwood,directs,Unforgiven), {(Anna_Levine,acts_in,Unforgiven)}

Knowledge Graphs: Property Graphs

 Property graphs: both nodes and edges can be labelled, associated with unique identifiers and optionally with a set of attribute/value pairs

A tuple: $G \coloneqq (V, E, L, Prop, Val, \rho, \lambda, \sigma)$

V a finite set of nodes, E a finite set of edges with $V\cap E=\emptyset$

 $\rho: E \to (V \times V)$ and $\lambda: (V \cup E) \to L$ are total functions

 σ : $(V \cup E) \times Prop \rightarrow Val$ is a partial function with Prop,Val finite sets of properties and values

$$V = \{n_1, \dots, n_5\} \quad E = \{e_1, \dots, e_7\}$$

$$\rho(e_1) = (n_1, n_2), \dots, \rho(e_7) = (n_2, n_4)$$

 $\lambda(n_1) = Person, \dots, \lambda(n_5) = Post, \lambda(e_1) = knows, \dots, \lambda(e_7) = likes$

 $\sigma(n_1, firstName) =$ Julie , $\sigma(n_1, lastName) =$ Freud , $\sigma(n_5, content) =$ Queen is awesome, $\sigma(e_5, date) = 14.09.15$

Knowledge Graphs: RDF and RDF Schema

- KGs interoperability requires imposing a semantics of the nodes/relation labels
- Different languages allow defining axioms of various complexity
- A minimal formalisation for DEL graphs is RDF/RDF Schema
- RDF a standardized data model for DEL graphs with restrictions on node/edge identifiers:
 - Nodes can be Uniform Resource Identifiers, XML Schema Datatypes(Literals, Date, Integer, etc.) or blank nodes
 - HTTP URIs for nodes and edges can be looked up by web-servers to return RDF descriptions (Semantic Web principle)
 - URIs are organized in namespaces (prefixed)
 - rdf:type, rdf:Property
- RDFS a metalanguage for defining the semantics of the terms in a RDF KG (an Ontology)
 - rdfs:Resource, rdfs:subClassOf, rdfs:Class, rdfs:Domain, rdfs:Range, rdfs:subPropertyOf, rdf:Statement, etc.

Knowledge Graphs: RDF example

@prefix mdb-ont : <http://movie-database/ontology#> .
@prefix mdb : <http://movie-database/resource> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

xsd:date rdf:type rdfs:Datatype .

mdb-ont :Film rdf:type owl:Class ; rdfs:label "Film" .

mdb-ont :Western rdf:type owl:Class ; rdfs:subClassOf :Film.

mdb-ont :Award rdf:type owl:Class.

mdb-ont:acts_in rdf:type owl:ObjectProperty; rdfs:subPropertyOf :perfomsIn; rdfs:domain mdb-ont :Actor; rdfs:range mdb-ont :Film; owl:minCardinality 1. mdb-ont:stars rdf:type owl:ObjectProperty ; rdfs:domain:Film ; rdfs:range mdb-ont:Actor ; owl:inverseOf mdb-ont:acts .

fmdb-ont:budget rdf:type owl:DatatypeProperty; rdfs:domain mdb-ont :Film ; rdfs:range xsd:float .

mdb-ont:title rdf:type owl:DatatypeProperty;
 rdfs:domain mdb-ont :Film;
 rdfs:range rdfs:Literal.

I mdb-ont:hasName rdf:type owl:DatatypeProperty ;
 rdfs:domain mdb-ont :Film ;
 rdfs:range rdfs:Literal.

mdb:m1 rdf:type owl:NamedIndividual , mdb-ont :Film ; mdb-ont:title 'Unforgiven'.

mdb:a1 rdf:type owl:NamedIndividual , mdb-ont :Actor ; mdb-ont:hasName 'Clint Eastwood'.

mdb:a2 rdf:type owl:NamedIndividual , mdb-ont :Film ; mdb-ont:hasName 'Anne Levine'.

Querying Graphs: Graph Patterns

Query: Find all co-stars of a movie in graph G

A graph pattern is a tuple Q=(V,E,L) where $V,L \subseteq$ Term

 $Var \cap Const = \emptyset$, Term = Const \cup Var

 $E \subseteq V \times L \times V$ is a set of triples

Var(Q) = all variables in Q

The evaluation of Q over the data graph G: $Q(G) = \{\mu | \mu(Q) \subseteq G, dom(\mu) = Var(Q)\}$

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
Clint Eastwood	Anna Levine	Unforgiven
Anna Levine	Clint Eastwood	Unforgiven
Clint Eastwood	Clint Eastwood	Unforgiven
Anna Levine	Anna Levine	Unforgiven

Querying Graphs: Path Queries

Query: find the posts that are liked by friends of friends of Julie and have a tag that Julie follows.

Path expression: $l \in L$

if r_1, r_2 are PE, $r_1^-, r_1^*, r_1 \cdot r_2, r_1 | r_2$

Path expression evaluation

Given G = (V, E, L) and PE r , evaluation r[G]:

 $r[G] \coloneqq \{(u, v) \mid (u, r, v) \in E\} \text{ (for } r \in \text{Con)}$

 $r^{-}[G] \coloneqq \{(u, v) \mid (v, u) \in r[G]\}$

 $r_1 \mid r_2 \; [G] \coloneqq \; r_1[G] \cup r_2[G]$

$$\begin{split} r_1 \cdot r_2[G] &\coloneqq \{(u, v) \mid \exists w \in V : (u, w) \in r_1 \; [G] \text{ and } (w, v) \in r2 \; [G] \} \\ r^*[G] &\coloneqq \bigcup_{n \in \mathbb{N}^+} r^n[G] \text{ with } r_n \text{ the } n^{th} \text{-concatenation of } r \end{split}$$

Querying Graphs: Navigational Graph Patterns

Query: find the posts that are liked by friends of friends of Julie and have a tag that Julie follows.

• Graph patterns can be combined with regular path queries to create complex query language

Bridging Knowledge Graphs

- We can reference distinct KGs in the namespace declarations
- we use the OWL predicate owl:sameAs to state equality of individuals from different ontologies

mdb:Unforgiven owl:sameAs dbpedia:Unforgiven

- SPARQL queries are evaluated wrt a RDF dataset
 - 1 default graph
 - a set of named graphs
- Now we can access different information about the same individuals as encoded in different KGs

Knowledge Graphs: Reification

- By default a triple represents a fact that holds True in domain
- No way to distinguish the fact from the assertion about that fact and the related properties
- Turn a predicate edge into a node of type rdf:Statement and add 3 native triples for subj,pred, obj
- It allow add attributes from different meta-ontologies describing the Provenance of information (PROV), TIME, etc.

:Unforgiven :stars :Clint_Eastwood

:statement 01 a rdf:Statement ; rdf:subject :Unforgiven ; rdf:predicate :stars ; rdf:object : Clint Eastwood ; time:validFrom 1976 ; prov:wasDerivedFrom

- Document-centric Knowledge Graphs: based on metadata like authors, titles, organizations, citations, controlledvocabulary topic terms
 - Microsoft Academic Graph
 - Semantic Scholar
 - OpenAlex
 - AIDA
- Content-based Knowledge Graphs: knowledge triples extracted from Abstract/Full Text
 - Open Research Knowledge Graph
 - Computer Science Knowledge Graph

- Academia/Industry DynAmics (AIDA) Knowledge Graph: 21M publications and 8M patents in Computer Science
- Main classes: paper/patent,cso:Topic,author,affiliation,affiliationType(a cademia,industry,collaborative),industrialSector
- Main relations: hasTopic, hasIndustrialSector, hasAffiliation, hasAffiliationType,schema:creator,schema:memberOf
- Uses a very granular topic tagger for CS (14k topics)

 it supports extracting analytical data about the relation between Research and Industry

```
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX prism: <http://prismstandard.org/namespaces/basic/2.0/>
PREFIX aida:<http://aida.kmi.open.ac.uk/ontology#>
PREFIX cso: <http://cso.kmi.open.ac.uk/topics/>
```

```
SELECT ?year ?ind count(distinct(?paper) ) as ?n_publications
FROM <http://aida.kmi.open.ac.uk/resource>
WHERE {
    ?paper aida:hasIndustrialSector ?ind .
    ?paper aida:hasTopic cso:neural_networks .
    ?paper aida:hasAffiliationType 'industry'.
    ?paper prism:publicationDate ?year .
FILTER(xsd:integer(?year)>=2016 && xsd:integer(?year)<=2019)
}
GROUP BY ?ind ?year</pre>
```

Try AIDA \times https://aida.kmi.open.ac.uk/sparglendpoint 1 * PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 2 PREFIX prism: <http://prismstandard.org/namespaces/basic/2.0/> 3 PREFIX aida:<http://aida.kmi.open.ac.uk/ontology#> 4 PREFIX cso: <http://cso.kmi.open.ac.uk/topics/> 5 SELECT ?year ?ind count(distinct(?paper)) as ?n_publications 6 FROM <http://aida.kmi.open.ac.uk/resource> 7 ▼ WHERE { 8 ?paper aida:hasIndustrialSector ?ind . 9 ?paper aida:hasTopic cso:neural networks . 10 ?paper aida:hasAffiliationType 'industry'. 11 ?paper prism:publicationDate ?year . 12 FILTER(xsd:integer(?vear)>=2016 && xsd:integer(?vear)<=2019)</pre> 13 } 14 GROUP BY ?ind ?year

📰 Table 🛛 🖹 Response	115 results in 0.605 seconds
----------------------	------------------------------

year	♦ ind	n_publications
2019	http://aida.kmi.open.ac.uk/resource/semiconductor	398
2019	http://aida.kmi.open.ac.uk/resource/automotive	117
2019	http://aida.kmi.open.ac.uk/resource/entertainment	5
2019	http://aida.kmi.open.ac.uk/resource/advisory_services	7
2019	http://aida.kmi.open.ac.uk/resource/home_appliances	20
2019	http://aida.kmi.open.ac.uk/resource/construction	3
2019	http://aida.kmi.open.ac.uk/resource/manufacturing	20
2019	http://aida.kmi.open.ac.uk/resource/technology	1688
2019	http://aida.kmi.open.ac.uk/resource/energy	37
2019	http://aida.kmi.open.ac.uk/resource/electronics	303
2019	http://aida.kmi.open.ac.uk/resource/aerospace	12
2019	http://aida.kmi.open.ac.uk/resource/management	332
2019	http://aida.kmi.open.ac.uk/resource/health_care	71
2019	http://aida.kmi.open.ac.uk/resource/utilities	1
2019	http://aida.kmi.open.ac.uk/resource/financial	56

Use case: answering research questions on research entities

Entity: CRISPR/Cas9 method

Question: Precision/Safety

Constraint: on butterflies

- Overwhelmed by result size
- Recall depends on query term choice

≡	Google Scholar	crispr AND cas AND lepidoptera	
٠	Articles	About 2,470 results (0.06 sec)	
	Any time Since 2023 Since 2022 Since 2019 Custom range	[HTML] CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects JJ Li, Y Shi, JN Wu, H Li, G Smagghe, <u>TX Liu</u> - Journal of Insect Physiology, 2021 - Elsevier /Cas9 technology has been used more and more in insects including Lepidoptera (status of CRISPR/Cas in different fields with Lepidoptera. There is no doubt that CRISPR/Cas9 ☆ Save 99 Cite Cited by 27 Related articles All 5 versions	[HTML] sciencedirect.com
	Sort by date	[HTML] Progress and prospects of CRISPR/Cas systems in insects and other arthropods	[HTML] frontiersin.org
	Any type Review articles	D Sun, <u>Z Guo</u> , <u>Y Liu</u> , <u>Y Zhang</u> - Frontiers in physiology, 2017 - frontiersin.org In this review, we have elaborated on the application and prospects of the CRISPR/Cas system in insects of groups including Diptera, Lepidoptera, Coleoptera, and Orthoptera and non	
	 include patents ✓ include citations 	☆ Save 99 Cite Cited by 140 Related articles All 7 versions ≫	[HTML] nature.com
	Create alert	(Lepidoptera: Noctuidae) by using the CRISPR/Cas9 system ZF Ye, XL Liu, Q Han, H Liao, XT Dong, <u>GH Zhu</u> Scientific Reports, 2017 - nature.com the important lepidopteran pest Helicoverpa armigera (HarmPBP1), by using the CRISPR/Cas9 CPISDD/Cas0 system in functional genetic study in H. arminere are used to extend the statements.	Full View

- Need of an explicit representation of research knowledge in the papers, aside of topic labels in domain vocabulary
- Support for semantic queries such as:
 - which metrics are used to evaluate dimensionality reduction?
 - which benchmarks are used for fake news detection?
 - ...
- This requires automatic detection of Research entities and relations:
 - ont:Task (genome editing, nonlinear dimensionality reduction, fake news detection)
 - ont:Method (CRISPR/Cas9, UMAP,...)
 - ont:Dataset (e.g. LIAR)
 - ont:UsedFor, ont:EvaluateOn

Problem Statement:

```
given a document collection D = \{d_1, \dots, d_n\}, build a model :

\gamma: D \to G

with G := (E, T, R)

E a finite set of nodes (domain-specific research entities)

R a finite set of relation labels (domain-specific research relations)

T \subseteq E \times R \times E \times \mathbb{P}(D) is the set of triples of the form \langle e_i, r, e_j \rangle referencing the subsets of documents generating

them
```

- Automatically-generated large scale examples for restricted scientific domains:
 - Artificial Intelligence Knowledge Graph (AI-KG): 1.2M statements about 820k entities from 330k papers
 - Computer Science Knowledge Graph (CS-KG): 41M statements about 10M entities/179 relations from 6.7M articles (2020-2021, currently updated every 6 months)

https://scholkg.kmi.open.ac.uk/

- statements are claims extracted from one or more research articles in the form <subject, predicate, object>
- 5 entity types: cskg-ont:Task, cskg-ont:Method, cskgont:Material, cskg-ont:Metric, cskg-ont:Other
- PROV Ontology is used to track the provenance of a claim (source, processing tool that generated it)

Scholarly Domain KGs

https://scholkg.kmi.open.ac.uk/sparql/

prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
prefix cskg: http://scholkg.kmi.open.ac.uk/cskg/resource/
prefix cskg-ont: <http://scholkg.kmi.open.ac.uk/cskg/ontology#>
SELECT (cskg:sentiment_analysis as ?sub) ?prop ?obj ?sup
FROM http://scholkg.kmi.open.ac.uk/cskg
WHERE { ?t rdf:subject cskg:sentiment_analysis ;
rdf:predicate ?prop ; rdf:object ?obj ;
cskg-ont:hasSupport ?sup }

ORDER BY desc (?sup)

	Table E Response 8361 results in 2.203 seconds				
	sub 🗍	prop 🔶	obj 🍦	sup	
1	cskg:sentiment_analysis	http://www.w3.org/2004/02/skos/core#broader	cskg:natural_language_processing	"149" ^{^^} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
2	cskg:sentiment_analysis	cskg-ont:usesMethod	cskg:deep_learning	"83" ^{AA} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
3	cskg:sentiment_analysis	cskg-ont:usesMethod	cskg:machine_learning	"76" ^{M<http: 2001="" www.w3.org="" xmlschema#integer=""></http:>}	
4	cskg:sentiment_analysis	cskg-ont:usesMaterial	cskg:twitter	"74" ^{^A} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
5	cskg:sentiment_analysis	cskg-ont:usesMaterial	cskg:social_social_medium	"71" ^{AA} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
6	cskg:sentiment_analysis	cskg-ont:usesMethod	cskg:naive_bayes	"61" ^{M<http: 2001="" www.w3.org="" xmlschema#integer=""></http:>}	
7	cskg:sentiment_analysis	cskg-ont:usesMethod	cskg:neural_network	"59" ^{^A} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
8	cskg:sentiment_analysis	<http: 02="" 2004="" core#broader="" skos="" www.w3.org=""></http:>	cskg:nlp_task	"54" ^{AA} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
9	cskg:sentiment_analysis	<http: 02="" 2004="" core#broader="" skos="" www.w3.org=""></http:>	cskg:natural_language_processing_related_t	"53" ^{^A} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
10	cskg:sentiment_analysis	cskg-ont:usesTask	cskg:data_augmentation	"47" ^{AA} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
11	cskg:sentiment_analysis	cskg-ont:usesTask	cskg:natural_language_processing	"47" ^{AA} <http: 2001="" www.w3.org="" xmlschema#integer=""></http:>	
12	cskg:sentiment_analysis	cskg-ont:usesMaterial	cskg:twitter_data_set	"47" "^< http://www.w3.org/2001/XMLSchema#integer>	

Problem

- can these methods be adapted to process more fast-reactive, language varied sources such as news, microblogging posts?
- is there sufficient overlapping of domain entities for tracking facts/relations concerning those entities?
- testing these hypotheses: experimenting with extracting Knowledge Graphs from social media posts on a target Tech domain: Digital Transformation

Knowledge Graph generation pipeline

"Triplétoile: Extraction of Knowledge from Microblogging Text" Vanni Zavarella, Sergio Consoli, Diego Reforgiato Recupero, Gianni Fenu, Simone Angioni, Davide Buscaldi, Danilo Dessi, Francesco Osborne under review for <u>Information Processing</u> <u>& Management</u>

Data Collection

• EU Projects:

Cordis API: 135k Horizon2020 EU project deliverables: Description+Full Text

- Scientific Papers:
 - OpenAlex API: 243M works, open replacement for industry-standard scientific knowledge bases (Elsevier's Scopus, Clarivate's Web of Science)
 - Semantic Scholar API: over 200M academic papers sourced from publisher partnerships, data providers, and web crawls
- Patents:
 - EPO's Open Patent Services (OPS) API: Up to 4 GB of data per week

Micro-blogging text:

- Twitter/X API: Academic Access License, currently suspended: 1M tweets #DigitalTransformation dataset
- Reddit: native API
- News:

using a Dow Jones Data, News and Analytics (DNA) dataset from the Joint Research Centre

Data Collection

- Collected via Twitter search API v2 a sample of ~1M English language tweets from 2002 with #DigitalTransformation (no retweets)
- Using a Elastic Search datalake, storing tweet text + metadata and hyperlinks
- currently collecting a Reddit thread/comment collection using Reddit native API
- Linked back from triples by tweet/thread/comment id

Data Preprocessing

• Standard NLP models struggle to process micro-blogging text

Two-fold approach:

- Keep tokens and token sequences encoding platform-specific metadata carrying syntactic functions (#digitaltransformation, @NASA) and remove by default the ones which typically do not (URLs, emoticons, reserved tokens)
- Platform-specific heuristics rules to remove syntax-disruptive token patterns
 - remove sequences of n entity mentions and retweet markers at the beginning of a sentence, with n > 1 or when the sequence is not followed by a verb
 - or any sequence of size n > 1 hashtags/mentions/URL, we drop the sub-sequence with indexes [1 : n] or drop the entire sequence if preceded by a sentence closing marker

Dependency parse trees

- No constituent structures, only lemmas and a set of directed, binary typed relations from head to dependent
- A directed edge-labelled acyclic graph g=(w,d) where:
 - $w \subseteq V$ (the vocabulary of the language) plus *Root*
 - One single Root with no incoming edge for each sentence
 - Any other node w has exactly 1 incoming edge
 - there is a unique path from Root to any w
- shared taxonomy of dep relations (the Universal Dependency project) valid across languages and large tree banks available for training models
- We use the Spacy's transformer pipeline en_core_web_trf-3.6.1 (over 95% dep parsing accuracy) trained on OntoNotes

https://github.com/explosion/spacymodels/releases/tag/en_cor e_web_trf-3.6.1

Clausal Argument Rel	Description	
nsubj	Nominal subject	
dobj	direct object	
ccomp	Clausal complement	
Nominal Modifier Rel	Description	
nmod	Nominal modifier	
amod	Adjectival modifier	
Other	Description	
conj	conjunct	

Data Preprocessing

- Example fixing of parsing errors
- Text preprocessing heuristics seem to remove noise instead of information content

Entity Extraction

- Non-recursive patterns over Spacy dependency parse trees
- Extract and store quantitative modifiers and syntactic head
- Integrate a restricted anaphora resolution module
- **Output** is a set $E = \{e_1, \dots, e_n\}$ of unmerged candidate entity phrases

Example:

<u>78% of #healthcare organizations are currently deploying #cloud computing</u>, with <u>20%</u> planning to deploy it in the future.

NOUN

Entity Refining

- Goal: clean up and normalize the candidate entities into a form that allows the merging across entity name variants
- Normalization: e.g. "#SmartCities" → "smart cities", etc.
- Feed the normalized text as input to the Spacy's DBpedia Spotlight model and link to DBpedia KG (*owl:sameAs*) the original entities if they (a.) contain **and** (b.) share syntactical head with Spacy entity spans
- Otherwise we draw a weaker 'relatedness' link (*skos:related*)

Candidate Entity	Canonical Form	Linked DBpedia Entity	Related DBpedia Entity
78% of #healtcare organisations	Form: healthcare_organisation Head: organisation Quant: 78%	-	http://DBpedia.org/resource/H ealth_care
#digitaltransformation leaders	Form: digital_tranformation_leader Head: leader	-	http://DBpedia.org/resource/Di gital_Transformation
Gartner	Form: gartner Head: gartner	http://DBpedia.org/resource/Gartner	http://DBpedia.org/resource/G artner
@Gartner_inc	Form : gartner_inc Head : gartner_inc	http://DBpedia.org/resource/Gartner	http://DBpedia.org/resource/G artner
Gartner survey	Form: gartner_survey Head: survey	-	http://DBpedia.org/resource/G artner

Relation Extraction

- **Goal**: generate a set of candidate verbal relations $V = v_0, ..., v_k$ and a set of triples $S = s_0, ..., s_k$ of the form $\langle e_m, v, e_n \rangle$ where $v \in V$ and $e_m, e_n \in E$
- Method:

For each dep tree G_s of sentence sfor each pair of candidate entities e_m , e_n in scollect all shortest paths p in G_s connecting e_m , e_n such that: p contains a verb node vp is in a verified pattern list VP

 VP was filtered using majority voting among 3 experts from the 20 most frequent of a set of 3695 path shortest patterns connecting automatically annotated entities in a separated corpus

Target Dependency Paths	Sample Discarded Paths
[nsubj,dobj]	[obj,pobj]
[acl,relcl,dobj]	[obl,pobj]
[acl,dobj]	[nsubj,pobj,nmod]
[nsubjpass,agent,pobj]	
[nsubj,dobj,conj]	
[nsubj,conj]	

Relation Refining

- **Goal**: generalize from the set $S = s_0, ..., s_k$ of surface form triples of type $\langle e_m, v, e_n \rangle$ to the lower sized set $T = T_0, ..., T_k$ of triples of the form $\langle \varepsilon_m, r, \varepsilon_n \rangle$ where each $\varepsilon_i \in E$ is an entity and r is a label in a common relation vocabulary R
- Derive relation embeddings vectors
- Apply dimensionality Reduction and Clustering
- Mapping relation verbs to cluster representatives

			~
Subject Entity	Relation	Object Entity	Support
pandemic	accelerate	$digital_transformation$	15
$artificial_intelligence$	impact	insurance_sector	7
microsoft	buy	riskiq	6
$data-driven_insight$	drive	decision-making	5
$agile_business$	demand	effective_marketing_capability	4
hootsuite	buy	$ai_chatbot_firm$	4
automl	generate	data-driven_insight	2
$image_classification$	use	$transfer_learning$	2
$new_belgium_brewing$	implement	digital workflow_place_solution	2
e-rupi	back	existing indian rupee	1
82%_of_cio	implement	new_technology	1
$image_recognition_framework$	use	artificial_intelligence	1
microinsurance	close	$a frica_insurance_gap$	1
$hsbc_qatar$	introduce	mobile_payment	1
$ford_motor_company$	explore	blockchain_technology	1

Relation Embeddings

- Starting with a set of 29,335 raw triples, we derived 2,539 unique 300-dimensional word embeddings from GloVe and standardized them
- non-contextual embeddings from Spacy's en_core_web_lg-3.6.0 LM
- GloVe architecture: Shallow NN, simplification of predictive language models like Word2Vec skip-gram, gradient descent minimizes the cost function:

$$J = \sum_{i,j=0}^{V} f(X_{i,j}) (w_i^T \widetilde{w}_j + b_i + \widetilde{b}_j - \log X_{i,j})^2$$

V is the vocabulary size

- HDBSCAN is a hierarchical version of the popular density-based DBSCAN algorithm
- sound assumptions for our use case:
 - does not require to preset the number of clusters
 - it considers outliers and leaves un-clustered the data points lying in low-density regions

Problem: high dimensional data require more observed samples to produce the suitable level of density for HDBSCAN to work properly

Solution: applying UMAP to perform non-linear dimension reduction the dataset dimension gets small enough for HDBSCAN to cluster most of the instances

- optimize the UMAP-HDBSCAN combination by grid search over the hyperparameters
- We define a target score: $S = silhouette_X \cdot clustered_X$
 - *silhouette_x* of an instance $x \in X$ is equal to: $\frac{b-a}{\max(a,b)}$ with *a* being the mean distance to the other instances in the same cluster, and *b* being the mean distance to the instances of the next closest cluster
 - $clustered_x$ is the is the fraction of instances of X that were actually clustered by HDBSCAN

HDBSCAN		
min_cluster_size	smallest data point groupings that are considered as clusters	[3, 5, 10, 15]
min_samples	number of samples in a neighbourhood for a point to be considered a core point	[None, 1, 3]
cluster_selection_epsilon	distance threshold under which clusters will be merged	[0.0 , 0.2, 0.5]
UMAP		
min_dist	controls how tightly UMAP is allowed to pack points together	[0.0 , 0.1]
n_neighbors	how many data points UMAP is looking at when attempting to learn the manifold structure of the data	[5, 10, 50]
n_components	dimensionality of the reduced space to embed data into	[2, 3, 5, 10, 20]

- Select a subset of best-scoring UMAP-HDBSCAN configurations and plotted their S score over the number of output clusters they generate
- pick a sub-optimal configuration that balances between generalization (fewer clusters) and accuracy (cluster number closer to the dataset size)
- overall score of around 0.62, silhouette score on clustered points 0.71 and data clustering percentage 0.87, returning 236 clusters, with an average cluster size of 12 elements

- UMAP-computed 3-dimensional space representation of the relation embedding vectors for the chosen clustering configuration
- relatively local structure is accurately captured, with few data points left un-clustered (marked in grey)

Relation Mapping

- Finally, for each relation verb *v* in the dataset, we replace it with the predicate label *r* consisting of the lemma of the most frequent relation in the cluster of *v*.
- If not clustered, we map it to itself

Relation Verb	Relation Predicate	Example
fuel	FUEL	'How the UR+ Ecosystem is fueling Cobot Market Growth'
driven by	FUEL	'Digital transformation in Ho Chi Minh is being driven by remote working'
accelerated by	FUEL	"huge social trends being accelerated by the pandemic"
identify	IDENTIFY	'Machine learning can identify signs of Alzheimers in patients'
quantify	IDENTIFY	'Research quantifies G's potential in roaming and manufacturing'
predict	IDENTIFY	'Al-supported test can predict eye disease that leads to blindness'

Evaluation

- Human expert assessment: 500 statements, equally distributed among high-support (>= 5) and low-support triples
- Annotators were instructed to assign True if
 - the subj and obj entities are linked by a relation in the tweet text
 - the assigned relation label entails the relation verb in the tweet text
 - the spans of the subject/object of extracted triples include the syntactic head of the relation's subject/object
- 3 evaluators with majority vote (Fleiss K_F agreement = 0.558, substantial agreement/ pairwise Cohen K agreement = 0.61)
- overall **Precision** of **0.96**, individual rates ranging from 0.90 to 0.96
- Primary error sources: failure in the syntactic parsing of the sentence, inaccuracy of relation clustering/mapping error in pronominal anaphora resolution

Evaluation

- Comparative Evaluation: on 500 random tweets we run our pipeline and merged extracted candidate entities with the one generated by the DyGIE++ Extractor
- run 4 alternative methods to identify relationships between these entities from the same set of tweets
- measured number of extracted triples (approximation to recall when combined with Precision estimate)
- Human expert majority vote Precision assessment of 150 triple sample (Fleiss K_F agreement = 0.86)
- significant advantage over the Dependency-based Extractor method, which deploys very similar syntactic information from the sentence (may be due to the application of the processing step upstream)

Extraction Method	Generated Triples	Precision
OpenIE Extractor	588	0.52
PoST Extractor	1015	0.17
Dependency-based Extractor	339	0.77
Entity and Relationship Refiner	348	0.31
Triplétoile	663	0.82

D. Wadden, U. Wennberg, Y. Luan, H. Hajishirzi, Entity, relation, and event extraction with contextualized span representations

Triple Store: DTSMM

- First prototype 22270 triple store extracted from the test 100k tweet sample
- Reification of claims into dtsmm-ont:Statement class instances, encoding support, provenance and negation attributes

```
dtsmm-ont:statement_10100 a dtsmm-ont:Statement,
rdf:Statement ;
dtsmm-ont:negation false ;
dtsmm-ont:comesfromTweet dtsmm:tweet_1424266328882429952 ;
...
dtsmm-ont:hasSupport 6 ;
rdf:subject dtsmm:multi_page_document_classification ;
rdf:predicate dtsmm-ont:use ;
rdf:object dtsmm:machine_learning .
```

• DTSMM provides 2,857 owl:sameAs links and 3,309 skos:related links to DBpedia entries

Triple Store: DTSMM

- Triple store is currently being updated with Reddit and News data
- A more mature version of the Knowledge Graph will be made publicly accessible as Terse RDF dump under the 'Dataset Socioeconomic Tracker using Unconventional Data' within the EU Data Portal:

https://data.jrc.ec.europa.eu/dataset/f7be47f7-49a2-44e8-9dc8-043735af4139

• The direct link to the Digital Transformation knowledge graph, available in Terse RDF Triple Language (Turtle):

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/CC-COIN/se-tracker/DTSMM_KG.ttl

Current Limitations

- **Data collection**: native fine-grained topic classification not available for news/SM post, so automatic sampling methods are needed to increase recall
- Entity/Relation Extraction: does not rely on the ontology specification of a target domain in order to customize the extraction process
- **Relation Mapping**: a domain-specific classification schema for relations would allow setting up a supervised learning of the relation mapping
- Current low scale prevents using inductive graph learning methods

Ongoing Developments

- **Data collection**: using transformer-based topic classification method (SBert) for collecting more accurate sample of input data
- Integrating with KGs from more 'standard' sources
- adapting existing supervised learning framework (e.g. DyGIE++):
 - categorize unlinked entities
 - categorize relations

THANK YOU!

zavavan@yahoo.it