Detalle Publicación

ARTÍCULO

Chronic Levodopa Administration Followed by a Washout Period Increased Number and Induced Phenotypic Changes in Striatal Dopaminergic Cells in Mptp-Monkeys

Título de la revista: PLOS ONE
ISSN: 1932-6203
Volumen: 7
Número: 11
Fecha de publicación: 2012
Resumen:
In addition to the medium spiny neurons the mammalian striatum contains a small population of GABAergic interneurons that are immunoreactive for tyrosine hydroxylase (TH), which dramatically increases after lesions to the nigrostriatal pathway and striatal delivery of neurotrophic factors. The regulatory effect of levodopa (L-Dopa) on the number and phenotype of these cells is less well understood. Eleven macaques (Macaca fascicularis) were included. Group I (n = 4) received 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) and L-Dopa; Group II (n = 4) was treated with MPTP plus vehicle and Group III (n = 3) consist of intact animals (control group). L-Dopa and vehicle were given for 1 year and animals sacrificed 6 months later. Immunohistochemistry against TH was used to identify striatal and nigral dopaminergic cells. Double and triple labeling immunofluorescence was performed to detect the neurochemical characteristics of the striatal TH-ir cells using antibodies against: TH, anti-glutamate decarboxylase (GAD(67)) anti-calretinin (CR) anti-dopa decarboxylase (DDC) and anti-dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32). The greatest density of TH-ir striatal cells was detected in the striatum of the L-Dopa treated monkeys and particularly in its associative territory. None of the striatal TH-ir cell expressed DARPP-32 indicating they are interneurons. The percentages of TH-ir cells that expressed GAD67 and DDC was approximately 50%. Interestingly, we found that in the L-Dopa group the number of TH/CR expressing cells was significantly reduced. We conclude that chronic L-Dopa administration produced a long-lasting increase in the number of TH-ir cells, even after a washout period of 6 months. L-Dopa also modified the phenotype of these cells with a significant reduction of the TH/CR phenotype in favor of an increased number of TH/GAD cells that do not express CR. We suggest that the increased number of striatal TH-ir cells might be involved in the development of aberrant striatal circuits and the appearance of L-Dopa induced dyskinesias.
Impacto: